5382
J. G. Solsona et al. / Tetrahedron Letters 45 (2004) 5379–5382
See Ref. 3a;(b) It has been suggested that additional TiCl 4
equivalents can produce the abstraction of a chloride
anion or the formation of chloro bridged species. See Ref.
3e.
3.07 (1H, br s, OH), 1.69–1.61 (1H, m, CHCH2), 1.35 (3H,
d, J ¼ 6:8 Hz, CH3 CHOBn), 1.18 (3H, d, J ¼ 6:8 Hz,
COCHCH3), 1.08 (9H, s, C(CH3)3), 1.00 (3H, d,
J ¼ 7:0 Hz, CH3CHCH2); 13C NMR (100 MHz, CDCl3)
d 215.5, 137.5, 135.6, 135.5, 133.0, 132.9, 129.8, 129.7,
128.4, 127.8, 127.7 (·3), 79.3, 74.4, 71.6, 68.2, 44.0, 37.4,
26.8, 19.1, 16.5, 12.6, 11.3.
13. Masamune, S.;Choy, W.;Petersen, J. S.;Sita, L. R.
Angew. Chem., Int. Ed. Engl. 1985, 24, 1–30.
14. Roush, W. R.;Palkowitz, A. D.;Ando, K. J. Am. Chem.
Soc. 1990, 112, 6348–6359.
15. Selected physical and spectroscopic data.
6: colourless oil; Rf (hexanes/EtOAc 90:10) ¼ 0.1; ½aꢀ )7.7
16. The deprotection of the aldol adduct 6 affords a thermo-
dynamical mixture of two hemiacetals, the major compo-
nent being 8 both in CDCl3 (dr 80:20) and C6D6 (dr
65:35). In the case of adduct 7, a single hemiacetal 9 was
observed. Selected NMR data:
D
(c 1.42, CHCl3);IR (film): 3496, 3072, 2933, 2860, 1711,
1455, 1428, 1113 cmꢁ1 1H NMR (400 MHz, CDCl3) d
;
1
7.69–7.67 (4H, m, ArH), 7.46–7.28 (11H, m, ArH), 4.58
(1H, d, J ¼ 11:7 Hz, PhCHxHyO), 4.52 (1H, d,
J ¼ 11:7 Hz, PhCHxHyO), 4.11 (1H, q, J ¼ 6:9 Hz,
CHOBn), 3.99 (1H, dt, J ¼ 8:7 Hz, J ¼ 2:9 Hz, CHOH),
3.78 (1H, dd, J ¼ 10:1 Hz, J ¼ 4:4 Hz, CHxHyOSi), 3.67
(1H, dd, J ¼ 10:1 Hz, J ¼ 6:1 Hz, CHxHyOSi), 3.53 (1H,
d, J ¼ 2:9 Hz, OH), 3.12 (1H, qd, J ¼ 7:0 Hz, J ¼ 2:9 Hz,
COCHCH3), 1.84–1.71 (1H, m, CHCH2), 1.38 (3H, d,
J ¼ 6:9 Hz, CH3CHOBn), 1.10 (3H, d, J ¼ 7:0 Hz,
COCHCH3), 1.04 (9H, s, C(CH3)3), 0.85 (3H, d,
J ¼ 7:0 Hz, CH2CHCH3); 13C NMR (100 MHz, CDCl3)
d 215.2, 137.7, 135.6, 133.0, 132.9, 129.8, 128.4, 127.8,
127.7, 79.3, 74.4, 71.7, 68.0, 44.2, 37.6, 26.8, 19.2, 17.4,
13.6, 8.7.
8: H NMR (400 MHz, C6D6) d 7.30–7.00 (5H, m, ArH),
4.44 (1H, d, J ¼ 11:3 Hz, OCHxHyPh), 4.06 (1H, d,
J ¼ 11:3 Hz, OCHxHyPh), 3.88 (1H, t, J ¼ 11:8 Hz,
CHxHyO), 3.46 (1H, q, J ¼ 6:2 Hz, CHOBn), 3.34 (1H,
dd, J ¼ 11:8 Hz, J ¼ 5:3 Hz, CHxHyO), 3.05 (1H, br s,
CHOH), 2.23 (1H, qd, J ¼ 7:1 Hz, J ¼ 2:8 Hz,
CH3CHC(OH)O), 1.75–1.65 (1H, m, CH3CHCH2O),
1.38 (3H, d, J ¼ 6:2 Hz, CH3CHOBn), 0.78 (3H, d,
J ¼ 7:1 Hz, CH3CHC(OH)O), 0.64 (3H, d, J ¼ 6:9 Hz,
CH3CHCH2O).
1
9: H NMR (500 MHz, C6D6) d 7.30–7.00 (5H, m, ArH),
4.42 (1H, d, J ¼ 11:7 Hz, OCHxHyPh), 4.16 (1H, d,
J ¼ 11:7 Hz, OCHxHyPh), 3.58 (1H, t, J ¼ 11:2 Hz,
CHxHyO), 3.53 (1H, dd, J ¼ 11:2 Hz, J ¼ 5:2 Hz,
CHxHyO), 3.46 (1H, q, J ¼ 6:3 Hz, CHOBn), 3.17 (1H,
t, J ¼ 10:0 Hz, CHOH), 1.92 (1H, dq, J ¼ 10:0 Hz,
J ¼ 6:6 Hz, CH3CHC(OH)O), 1.56–1.46 (1H, m,
7: colourless oil; Rf (hexanes/EtOAc 90:10) ¼ 0.1; ½aꢀ )9.7
D
(c 1.18, CHCl3);IR (film): 3505, 3072, 2933, 2860, 1711,
1457, 1428, 1113 cmꢁ1 1H NMR (400 MHz, CDCl3) d
;
7.69–7.66 (4H, m, ArH), 7.47–7.29 (11H, m, ArH), 4.57
(1H, d, J ¼ 11:7 Hz, PhCHxHyO), 4.54 (1H, d,
J ¼ 11:7 Hz, PhCHxHyO), 4.20–4.00 (2H, m, CHOBn
and CHOH), 3.73 (1H, dd, J ¼ 10:2 Hz, J ¼ 3:9 Hz,
CHxHyOSi), 3.60 (1H, dd, J ¼ 10:2 Hz, J ¼ 4:7 Hz,
CHxHyOSi), 3.27 (1H, quintet, J ¼ 6:8 Hz, COCHCH3),
CH3CHCH2O),
1.18
(3H,
d,
J ¼ 6:6 Hz,
CH3CHC(OH)O), 1.14 (3H, d, J ¼ 6:3 Hz, CH3CHOBn),
0.74 (3H, d, J ¼ 6:5 Hz, CH3CHCH2O).
ꢁ
17. (a) Esteve, C.;Ferrer o, M.;Romea, P.;Urp ı, F.;Vilarrasa,
J. Tetrahedron Lett. 1999, 40, 5083–5086;(b) Solsona, J.
ꢁ
ꢁ
G.;Romea, P.;Urp ı, F. Org. Lett. 2003, 5, 4681–4684.