5346
P. Kwiatkowski et al. / Tetrahedron Letters 45 (2004) 5343–5346
11. Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-i.
J. Am. Chem. Soc. 1998, 120, 6419–6420.
12. (a) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Umani-
Ronchi, A. Angew. Chem., Int. Ed. 1999, 38, 3357–3359;
(b) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Tetra-
hedron 2001, 57, 835–843; (c) Berkessel, A.; Menche, D.;
obtained for n-butyl glyoxylate. In the case of the
reactions conducted in CH2Cl2, the enantiomeric excess
rises slightly (from 61% to 76% ee) along with the
increasing bulkiness of the R substituent in the glyoxy-
late. This effect is not as apparent for the reactions
conducted in MeNO2.
€
Sklorz, C. A.; Schroder, M.; Paterson, I. Angew. Chem.,
Int. Ed. 2003, 42, 1032–1035.
In all cases, when the catalysts 3a–c having (1R,2R)
configuration were used, the allylation product had the
(R) configuration. The absolute configuration of prod-
ucts 2a–d was determined by correlation with 1,2-pen-
tanediol.16a
13. Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc.
2003, 125, 1140–1141.
14. (a) Dauben, W. G.; Hendricks, R. T.; Pandy, B.; Wu, S. C.
Tetrahedron Lett. 1995, 36, 2385–2388; (b) Rutjes, F. P. J.;
Kooistra, T. M.; Hiemstra, H.; Schoemaker, H. S. Synlett
1998, 192–194; (c) Zemribo, R.; Mead, K. T. Tetrahedron
Lett. 1998, 39, 3895–3898; (d) Macritchie, J. A.; Peakman,
T. M.; Silcock, A.; Willis, C. L. Tetrahedron Lett. 1998, 39,
In conclusion, we have developed an efficient,
undemanding method for the enantioselective allylation
of glyoxylates, which affords products with enantiomeric
excesses in the range of 58–76%. The reaction is highly
reproducible and not sensitive to external factors such as
oxygen or moisture. Moreover, it can be performed on
large scale.
ꢁ
ꢁ
7415–7418; (e) Dıaz, Y.; Bravo, F.; Castillon, S. J. Org.
Chem. 1999, 64, 6508–6511; (f) Ghosh, A. K.; Lei, H.
J. Org. Chem. 2000, 65, 4779–4781.
15. (a) Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.;
Chen, H. H.; Deyo, D.; James, D.; Liu, C.-L.; Minton, M.
A. Tetrahedron 1986, 42, 2993–3001; (b) Macritchie, J. A.;
Silcock, A.; Willis, C. L. Tetrahedron: Asymmetry 1997, 8,
3895–3902; (c) Ramachandran, P. V.; Krzeminski, M. P.;
Reddy, M. V. R.; Brown, H. C. Tetrahedron: Asymmetry
1999, 10, 11–15; (d) Wang, D.; Wang, Z. G.; Wang, M.
W.; Chen, Y. J.; Liu, L.; Zhu, Y. Tetrahedron: Asymmetry
1999, 10, 327–338; (e) Loh, T.-P.; Xu, J. Tetrahedron Lett.
1999, 40, 2431–2434; (f) Jung, J. E.; Ho, H.; Kim, H.-D.
Tetrahedron Lett. 2000, 41, 1793–1796; (g) Yu, H.;
Ballard, C. E.; Wang, B. Tetrahedron Lett. 2001, 42,
1835–1838.
According to our knowledge, this reaction is the first
example of enantioselective allylation where the salen
complex is directly used as a Lewis acid (except for the
use of salen in the Nozaki–Hiyama–Kishi reaction). The
results seem to be a good starting point to further
optimization involving modification of the chiral ligand,
especially its 1,2-diamine moiety. Further studies to
improve the enantioselectivity of this reaction are
underway.
16. (a) Kiegiel, K.; Prokopowicz, P.; Jurczak, J. Synth.
Commun. 1999, 29, 3999–4005; (b) Czapla, A.; Chajewski,
A.; Kiegiel, K.; Bauer, T.; Wielogorski, Z.; Urbanczyk-
Lipkowska, Z.; Jurczak, J. Tetrahedron: Asymmetry 1999,
10, 2101–2111.
References and notes
17. Aoki, S.; Mikami, K.; Terada, M.; Nakai, T. Tetrahedron
1993, 49, 1783–1792.
18. Halligan, N. G.; Blaszczak, L. C. Org. Synth. 1990, 68,
104–108.
1. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–2293.
2. Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561–
562.
ꢁ
3. For a recent review, see: Denmark, S. E.; Fu, J. Chem.
Rev. 2003, 103, 2763–2793.
4. (a) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini,
C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001–
7002; (b) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am.
Chem. Soc. 1993, 115, 8467–8468.
19. (a) Martınez, L. E.; Leighton, J. L.; Carsten, D. H.;
Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5897–5898;
(b) Leighton, J. L.; Jacobsen, E. N. J. Org. Chem. 1996,
61, 389–390.
ꢀ
20. Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem.
1998, 63, 403–405.
5. Bedeschi, P.; Casolari, S.; Costa, A. L.; Tagliavini, E.;
Umani-Ronchi, A. Tetrahedron Lett. 1995, 36, 7897–
7900.
6. Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto,
H. J. Am. Chem. Soc. 1996, 118, 4723–4724.
7. Cozzi, P. G.; Orioli, P.; Tagliavini, E.; Umani-Ronchi, A.
Tetrahedron Lett. 1997, 38, 145–148.
8. Motoyama, Y.; Narusawa, H.; Nishiyama, H. Chem.
Commun. 1999, 131–132.
9. Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D.
J. Org. Chem. 1994, 59, 6161–6163.
21. For a review of applications of (salen)Cr complexes in
asymmetric catalysis, see: Bandini, M.; Cozzi, P. G.;
Umani-Ronchi, A. Chem. Commun. 2002, 919–927.
22. (a) Kwiatkowski, P.; Asztemborska, M.; Caille, J.-C.;
Jurczak, J. Adv. Synth. Catal. 2003, 506–509; (b) Kwiat-
kowski, P.; Asztemborska, M.; Jurczak, J. Synlett, in press.
23. (a) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 1999, 38, 2398–2400; (b) Gade-
mann, K.; Chavez, D. E.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2002, 41, 3059–3061.
24. (a) Ruck, R. T.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
124, 2882–2883; (b) Ruck, R. T.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2003, 42, 4771–4773.
10. Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetra-
hedron Lett. 1998, 39, 2767–2770.