C O M M U N I C A T I O N S
Scheme 3
H2O, 25 °C, 0.7 h, 100%) provided (+)- and ent-(-)-1, which
proved to be indistinguishable from natural yatakemycin (1H NMR,
IR, MS, TLC, HPLC). Moreover, the enantiomer depicted in
Scheme 4 exhibited a strong dextrorotatory [R]D (+100) matching
that of the natural product (+99), establishing the absolute
stereochemistry and confirming an earlier tentative assignment made
in the DNA alkylation studies of 1.5
Thus, the first total synthesis of yatakemycin is described in
efforts that served to revise the natural product structure as 1 and
to establish the absolute stereochemistry. In addition to constituting
the first naturally occurring “sandwiched” member of this class of
DNA alkylating compounds, its structure now incorporates an
unusual thiomethyl ester, suggesting that protein conjugation may
contribute to its biological properties. Such studies on 1 and its
key analogues are in progress and will be reported in due course.21
Acknowledgment. We gratefully acknowledge the financial
support of the NIH (CA41986 and CA42056) and the Skaggs
Institute for Chemical Biology. We thank Professor Igarashi of the
Toyama Perfectural University for authentic samples of yatake-
mycin. D.B.K. and M.S.T. are Skaggs Fellows.
Scheme 4
Supporting Information Available: Full experimental details and
comparison 1H NMR spectra of natural and synthetic 1. This material
References
(1) Igarashi, Y.; Futamata, K.; Fujita, T.; Sekine, A.; Senda, H.; Naoki, H.;
Furumai, T. J. Antibiot. 2003, 56, 107-113.
(2) Martin, D. G.; Biles, C.; Gerpheide, S. A.; Hanka, L. J.; Krueger, W. C.;
McGovren, J. P.; Mizsak, S. A.; Neil, G. L.; Stewart, J. C.; Visser, J. J.
Antibiot. 1981, 34, 1119-1125.
(3) Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.;
Kawamoto, I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915-1917.
(4) Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.; Kawamoto, I.;
Yasuzawa, T.; Takahashi, I.; Nakano, H. J. Antibiot. 1990, 43, 1037-
1038.
(5) Yatakemycin: Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.;
Igarashi, Y.; Boger, D. L. J. Am. Chem. Soc. 2003, 125, 10971-10976.
(6) CC-1065: Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M.
A.; Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Biochemistry 1988, 27,
3886-3892.
THF-CH3CN-H2O, 25 °C, 2 h, 75%) provided both enantiomers
of 3 (only one enantiomer shown), which proved to be substantially
more stable and easy to handle relative to 2. Like 2, 3 did not
correlate with yatakemycin. However, the 1H NMR chemical shifts
in the left-hand and central subunits of 3 matched those of an
authentic sample, suggesting that this portion of the structure
incorporating the reformulated thiomethyl ester was now in place.
The remaining discrepancies rested with subtle perturbations in the
1H NMR chemical shifts in the right-hand subunit of 3. A
(7) Duocarmycin A: Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S.
A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961-8971.
(8) Duocarmycin SA: Boger, D. L.; Johnson, D. S.; Yun, W. J. Am. Chem.
Soc. 1994, 116, 1635-1656.
(9) Review: Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. Engl. 1996,
35, 1438-1474.
(10) Boger, D. L.; Bollinger, B.; Hertzog, D. L.; Johnson, D. S.; Cai, H.; Mesini,
P.; Garbaccio, R. M.; Jin, Q.; Kitos, P. A. J. Am. Chem. Soc. 1997, 119,
4987-4998.
(11) Review: Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A.
Chem ReV. 1997, 97, 787-828.
(12) Boger, D. L.; Machiya, K.; Hertzog, D. L.; Kitos, P. A.; Holmes, D. J.
Am. Chem. Soc. 1993, 115, 9025-9036.
1
reexamination of the H NMR and HMBC data disclosed in the
(13) Tietze, L. F.; Haunert, F.; Feuerstein, T.; Herzig, T. Eur. J. Org. Chem.
2003, 3, 562-566.
structure identification established that the substituent locations,
but not their identity, had been defined. Computer simulations and
literature comparisons indicated that the reported chemical shifts
of C4-H and C7-H of the right-hand subunit may have been
switched and more closely matched those of a 5-hydroxy-6-
methoxyindole. Consequently, 1 was targeted for synthesis and
bears this right-hand subunit substituent reformulation as well as
the left-hand subunit thiomethyl ester.
(14) 6-Hydroxy-5-methoxyindole-2-carboxylic acid (23) was prepared by
benzyl deprotection (H2, 10% Pd/C, MeOH, 1 h, 99%) of 6-benzyloxy-
5-methoxyindole-2-carboxylic acid (Spectrum Chemical).
(15) Kato, S.; Morie, T. J. Heterocycl. Chem. 1996, 33, 1171-1178.
(16) (a) Adams, R.; Reifschneider, W. Bull. Soc. Chim. Fr. 1958, 1, 23-65.
(b) Kraus, G. A.; Yue, S.; Sy, J. J. Org. Chem. 1985, 50, 283-284.
(17) Barbero, M.; Cadamuro, S.; Degani, I.; Fochi, R.; Gatti, A.; Regondi, V.
Synthesis 1988, 300-302.
(18) Jordan, F.; Kudzin, Z.; Witczak, Z.; Hoops, P. J. Org. Chem. 1986, 51,
571-573.
Total Synthesis of (+)- and ent-(-)-Yatakemycin (1). N-Boc
deprotection of each enantiomer of 22 (4 N HCl-EtOAc, 70 °C, 1
h) and coupling with 5-hydroxy-6-methoxyindole-2-carboxylic acid
(35,20 4 equiv of EDCI, 3 equiv of NaHCO3, DMF, 25 °C, 14 h,
71%) followed by sequential methyl ester hydrolysis of 36 (4 equiv
of LiOH, THF-MeOH-H2O, 25 °C, 14 h, 74%) and benzyl ether
deprotection of 37 (1 atm H2, 10% Pd/C, THF, 2 h, 79%) provided
38 (Scheme 4, only the natural enantiomer is shown). N-Boc
deprotection of 33 (4 N HCl-EtOAc, 25 °C, 0.5 h), coupling with
38 (0.7 equiv, 4 equiv of EDCI, DMF, 25 °C, 16 h, 47%), and
subsequent spirocyclization of 39 (saturated NaHCO3 2:1 DMF-
(19) (a) Bolton, R. E.; Moody, C. J.; Rees, C. W.; Tojo, G. J. Chem. Soc.,
Perkin Trans. 1 1987, 931-935. (b) Boger, D. L.; Coleman, R. S. J. Am.
Chem. Soc. 1987, 109, 2717-2727. (c) Boger, D. L.; Coleman, R. S.;
Invergo, B. J.; Sakya, S. M.; Ishizaki, T.; Munk, S. M.; Zarrinmayeh, H.;
Kitos, P. A.; Thompson, S. C. J. Am. Chem. Soc. 1990, 112, 4623-4632.
(20) Synthesis of 5-hydroxy-6-methoxyindole-2-carboxylic acid (35): 3-ben-
zyloxy-4-methoxybenzaldehyde was condensed with N3CH2CO2Me (4
equiv, 4 equiv of NaOMe, MeOH, -15 °C, 3 h, then 0 °C, 24 h, 82%)
and then subjected to cyclization in xylenes (130 °C, 12 h, 66%). Methyl
ester hydrolysis (4 equiv of LiOH, 25 °C, 14 h, 99%) and benzyl ether
deprotection (1 atm H2, 10% Pd/C, 25 °C, 1 h, 83%) provided 35. See:
MacKenzie, A. R.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Chem.
Commun. 1983, 22, 1372-1373.
(21) L-1210 IC50 ) 5 pM (indistinguishable) for both (+)- and ent-(-)-1.
JA0472735
9
8398 J. AM. CHEM. SOC. VOL. 126, NO. 27, 2004