C O M M U N I C A T I O N S
Table 1. Synthesis of Pyrroles 3 from Conjugated Alkynoates 1
Finally, selective hydrolysis of the aliphatic ester generates an
additional point for functional diversity on the pyrrole molecule
(see Supporting Information for full details).
(Domino)a and from Alkyl Propiolate and Aldehydes (One-Pot)b
1
c
entry
Z
R
R
1 (%)
domino
one-potc
In summary, we have developed a metal-free, modular, and direct
synthesis of 1,2,3,4-tetrasubstituted pyrroles from simple and
commercially available components. The synthetic protocol embod-
ies two coupled domino processes and is neatly accomplished in a
one-pot manner according to the new chemical efficiency para-
digm.10 We believe that this method will have a significant
application in the fields of combinatorial chemistry, diversity-
oriented synthesis, and drug research.
1
2
3
4
5
6
7
8
9
CO2Me Et
CO2Me Et
CO2Me Et
Bn
Ph
pOMe-Ph
pOMe-Ph
Bn
(S)PhCHMe
amino acide
Bn
1a (87) 3a (74)
3b (38)d
(44)
3c (56)d
CO2Et
CO2Et
Et
Et
3dd
(53)
(51)
(47)
(42)
1e (88)
3e (77)
3f (72)
3g (69)
CO2Me Et
CO2Me Et
CO2Et
Me
1h (73) 3h (76)
CO2Me Hex
Bn
Bn
1i (76)
3i (61)
10 CO2Et
11 CO2Et
12 CO2Et
13 CO2Et
14 CO2Me iPr
15 CO2Et
16 CO2Et
Hex
3j
(47)
(41)
(49)
(46)
3-butenyl Bn
1k (79) 3k (60)
1l (68) 3l (65)
1m (85) 3m (63)
1n (81) 3n (58)
1o (72) 3o (70)
1p (41) 3p (55)
Acknowledgment. Dedicated to Professor AÄ ngel Gutie´rrez
Ravelo on the occasion of his 62nd birthday. This research was
supported by the Spanish MEC (PPQ2002-04361-C04-03). F.G.T.
and D.T. thank the Instituto Canario de Investigacio´n del Ca´ncer
for financial support (ISCiii, RTICCC C03/10). D.G.C. thanks the
Spanish MEC for an FPI grant. F.G.T. thanks Dr. P. de Armas and
Prof. V. S. Mart´ın for helpful comments on this work.
cit.f
Bn
Bn
Bn
Bn
iPr
cPr
(46)
BnOCH2 Bn
a
Conjugated alkynoate 1 (1 mmol) and the amine (1.3 mmol) were
b
absorbed on 1 g of silica gel and irradiated at 900 W for 8 min;
(1)
Aldehyde (1 mmol), alkyl propiolate (2 mmol), Et3N (0.5 mmol), 0 °C, 30
min. (2) silica gel (1 g), amine (1.3 mmol). (3) µυ-irradiation (900 W), 8
Supporting Information Available: Crystallographic data of 3n
(CIF) and experimental preparations for 1a-p, 3a-p, 5, and 6 (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
c
d
min. Yields of isolated pyrroles, in percent. Silica gel (2g) was used.
e
f
Amino acid is ethyl 3-aminobutyrate. Cit. from (S)-(-)-citronellal.
Scheme 1. Proposed Mechanism for the µυ-Assisted
Rearrangement of 1,3-Oxazolidines 2 to Pyrroles 3.
References
(1) Tietze, L. F.; Haunert, F. In Stimulating Concepts in Chemistry; Shibasaki,
M., Stoddart, J. F., Vo¨gtle, F., Eds.; Wiley-VCH: Weinheim, Germany,
2000; pp 39-64.
(2) (a) Tejedor, D.; Garc´ıa-Tellado, F.; Marrero-Tellado, J. J.; de Armas, P.
Chem.-Eur. J. 2003, 9, 3122-3131. (b) Tejedor, D.; Lo´pez, G. V.; Garc´ıa-
Tellado, F.; Marrero-Tellado, J. J.; de Armas, P.; Terrero, D. J. Org. Chem.
2003, 68, 3363-3365. (c) de Armas, P.; Garc´ıa-Tellado, F.; Marrero-
Tellado, J. J.; Tejedor, D.; Maestro, M. A.; Gonza´lez-Platas, J. Org. Lett.
2001, 3, 1905-1908.
(3) (a) Le Quesne, P. W.; Dong, Y.; Blythe, T. A. In Alkaloids: Chemical
and Biological PerspectiVes; Pelletier S. W., Ed.; Pergamon: Elmsford,
NY, 1999; Vol. 13, p 238. (b) Jones, R. A. In Pyrroles, Part II, The
Synthesis, ReactiVity and Physical Properties of Substituted Pyrroles;
Wiley: New York, 1992.
(4) Handbook of Conducting Polymers, 2nd ed.; Skotheim, T. A., Elsen-
baumer, R. L., Reynolds, J. R., Eds.; Marcel Decker: New York, 1998.
(5) For recent examples of metal-based one-pot synthesis, see: (a) Dhawan,
R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468-469. (b) Braun,
R. U.; Zeitler, K.; Muller, T. J. J. Org. Lett. 2001, 3, 3297-3300. For
recent examples from preformed scaffolds, see: (c) Kim, J. T.; Kel′in,
A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98-101. (d)
Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68, 7853-7861.
(e) Gabriele, B.; Dalerno, G.; Fazio, A.; Campana, F. B. Chem. Commun.
2002, 1408-1409. (f) Paulus, O.; Alcaraz, G.; Vaultier, M. Eur. J. Org.
Chem. 2002, 2565-2572. (g) Kel′in, A. V.; Srmek, A. W.; Gevorgyan,
V. J. Am. Chem. Soc. 2001, 123, 2074-2075. (h) Lee, C.; Yang, L.; Hwu,
T.; Feng, A.; Tseng, V.; Luh, T. J. Am. Chem. Soc. 2000, 122, 4992-
4993.
two carbon-nitrogen bonds, and an aromatic ring in a regiose-
lectiVe and efficient manner. The overall yields range from 40 to
55%, reflecting the high chemical efficiency of each of the reactions
involved (at least nine reactions, >90% average yield). In addition,
the reaction times are very short (less than 1 h), and the processing
is extremely bench- and environment-friendly (see Supporting
Information).
(6) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen,
J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899-907.
(7) (a) Ranu, B. C.; Dey, S. S. Tetrahedron Lett. 2003, 44, 2865-2868. (b)
Ranu, B. C.; Haijra, A.; Jana, U. Synlett 2000, 75-76.
(8) Mastsubara, S.; Yoshioka, M.; Utimoto, K. Chem. Lett. 1994, 827-830.
A plausible mechanism for this new µυ-assisted rearrangement
of 1,3-oxazolidines 2 is outlined in Scheme 1a. Two experimental
features support this mechanism: (1) acetaldehyde-d4 produces the
pyrrole 3e with deuterium at the methyl position but not in the
ring and (2) conjugated alkynoate 5, with two different ester groups,
produces pyrrole 6 as the only isomer (Scheme 1b).
(9) Other spontaneous rearrangements: (a) Polyak, F.; Dorofeeva, T.;
Zelchans, G.; Shustov, G. Tetrahedron Lett. 1996, 37, 8223-8226. (b)
Sheradsky, T.; Silcoff, E. R. J. Heterocycl. Chem. 1996, 33, 1271-1274.
(c) Le Rouzic, A.; Duclos, M.; Patin, H. Bull. Soc. Chim. Fr. 1991, 952-
961.
(10) Trost, B. M. Science 1991, 254, 1471-1477.
JA047396P
9
J. AM. CHEM. SOC. VOL. 126, NO. 27, 2004 8391