Communications
Evans, T. Rovis, M. C. Kozlowski, J. S. Tedrow, J. Am. Chem.
Soc. 1999, 121, 1994 – 1995.
electron-donating groups decrease the reaction rates. It is
noteworthy that IMOX ligands 11 and 12 give virtually
identical enantiomeric excesses in the reduction of acetophe-
none. Hence, these ligands were used interchangeably
throughout our work. Benzo[b]thiophene-derived ligand 15
appeared to give slightly better results, but its synthesis is
more laborious than those of 11 and 12. Unsaturated ketones
are chemoselectively and enantioselectively reduced by this
system (Table 2, entry 10). We believe that the new IMOX
ligands create a suitable chiral pocket in which the methyl-
ketones are coordinated such that nonbonding interactions
are minimized (Figure 3, R3 = aryl). The trityl group serves to
control the size of the pocket and hinder the approach of the
reducing agent to one face of the substrate.[13] Our work
suggests that hindered aromatic amines can be effectively
used as elements of stereocontrol in the design of effective,
novel catalysts.
In summary we have synthesized, in a modular fashion, a
novel class of chiral iminooxazoline (IMOX) ligands capable
of effectively promoting enantioselective reductions of aro-
matic methyl ketones with good enantioselectivity (86–
93% ee). This facile synthetic approach to IMOX ligands
may lend itself to the creation of large libraries of these
compounds. The application of IMOX ligands to other
asymmetric transformations is currently under investigation
in our laboratories.
[5] Copper–PyBOX complexes promote enantioselective Diels–
Alder reactions of monodentate dienophiles.[4m]
[6] M. Bandini, P. G. Cozzi, M. DeAngelis, A. Umani-Ronchi,
Tetrahedron Lett. 2000, 41, 1601 – 1605.
[7] For efficient modular ligands, see a) H. Deng, M. P. Isler, M. L.
Snapper, A. H. Hoveyda, Angew. Chem. 2002, 114, 1051 – 1054;
Angew. Chem. Int. Ed. 2002, 41, 1009 – 1012; b) C. A. Luchaco-
Cullis, H. Mizutani, K. E. Murphy, A. H. Hoveyda, Angew.
Chem. 2001, 113, 1504 – 1508; Angew. Chem. Int. Ed. 2001, 40,
1456 – 1460; c) K. D. Shimizu, B. M. Cole, C. A. Krueger, K. W.
Kuntz, M. L. Snapper, A. H. Hoveyda, Angew. Chem. 1996, 108,
1776 – 1779; Angew. Chem. Int. Ed. Engl. 1996, 35, 1668 – 1674;
d) I. Chataigner, C. Gennari, U. Piarulli, S. Ceccarelli, Angew.
Chem. 2000, 112, 953 – 956; Angew. Chem. Int. Ed. 2000, 39, 916 –
918; e) J. Blankenstein, A. Pfaltz, Angew. Chem. 2001, 113,
4577 – 4579; Angew. Chem. Int. Ed. 2001, 40, 4445 – 4447.
[8] Oxazoline 3: M. Peer, J. C. de Jong, M. Kiefer, T. Langer, H.
Rieck, H. Schell, P. Sennhenn, J. Sprinz, H. Steinhagen, B. Wiese,
G. Helmchen, Tetrahedron 1996, 52, 7547 – 7583. Oxazoline 4:
C. J. Richards, A. W. Mulvaney, Tetrahedron: Asymmetry 1996,
7, 1419 – 1430. Oxazolines 1, 2, and 5: a) P. G. Cozzi, F. Menges,
S. Kaiser, Synlett 2003, 833 – 836; b) L. F. Tietze, J. K. Lohmann,
Synlett 2002, 2083 – 2085.
[9] Modular ligands described by Hoveyda, Snapper, et al. were
prepared by condensation between aldehydes bearing a coordi-
nating group and chiral amines.[7] See also a) N. S. Josephsohn,
M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125,
4018 – 4019; b) K. E. Murphy, A. H. Hoveyda, J. Am. Chem. Soc.
2003, 125, 4690 – 4691.
Received: April 28, 2003
Revised: July 16, 2003 [Z51754]
[10] We have obtained a preliminary crystal structure for IMOX
ligand 13. The absolute planar chiral configuration was assigned
on the basis of the crystal structure (P. G. Cozzi, M. Monari, S.
Selva, unpublished results).
[11] Other reducing agents (silanes, BH3, poly(methylhydroxysilox-
ane) (PMSH)) were also studied. However, racemic products or
low enantiomeric excesses were obtained in the reduction of
acetophenone. For enantioselective reduction of ketones by
metal complexes and catecholborane, see a) W.-S. Huang, Q.-S.
Hu, L. Pu, J. Org. Chem. 1999, 64, 7940 – 7956; b) A. J. Blake, A.
Cunningham, A. Ford, A. J. Teat, S. Woodward, Chem. Eur. J.
2000, 6, 3586 – 3594; c) I. Sarvary, F. Almqvist, T. Frejd, Chem.
Eur. J. 2001, 7, 2158 – 2166.
[12] The following aromatic ketones were reduced under the
optimized reaction conditions: phenyl isopropyl ketone (60%
yield, 49% ee), isovalerophenone (82% yield, 78% ee), a-
bromoacetophenone (76% yield, 76% ee), and butyrophenone
(84% yield, 85% ee).
[13] To stress the importance of the hindered trityl group next to the
imino moiety, IMOX ligands prepared from different aromatic
and aliphatic amines were studied in the enantioselective
reduction of acetophenone under the optimized reaction con-
ditions. However, only racemic products or low enantiomeric
excesses were obtained (see Supporting Information).
Keywords: alcohols · asymmetric catalysis · enantioselectivity ·
.
ligand design · reduction
[1] H.-U. Blaser, Chem. Commun. 2003, 293 – 296.
[2] A. Pfaltz, Synlett 1999, 835 – 843.
[3] T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691 – 1693.
[4] For recent examples of C2 bisoxazoline–Lewis acid complexes as
catalysts, see a) J. S. Johnson, D. A. Evans, Acc. Chem. Res. 2000,
33, 325 – 335; b) N. Gathergood, W. Zhuang, K. A. Jørgensen, J.
Am. Chem. Soc. 2000, 122, 12517 – 12522; c) K. B. Jensen, J.
Thorhauge, R. G. Hazell, K. A. Jørgensen, Angew. Chem. 2001,
113, 164 – 167; Angew. Chem. Int. Ed. 2001, 40, 160 – 163; d) H.
Audrain, K. A. Jørgensen, J. Am. Chem. Soc. 2000, 122, 11543 –
11544; e) K. Juhl, N. Gathergood, K. A. Jørgensen, Angew.
Chem. 2001, 113, 3083 – 3085; Angew. Chem. Int. Ed. 2001, 40,
2995 – 2997; f) K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V.
Gothelf, K. A. Jørgensen, J. Am. Chem. Soc. 2001, 123, 5843 –
5844; g) N. Nishiwaki, K. R. Knudsen, K. V. Gothelf, K. A.
Jørgensen, Angew. Chem. 2001, 113, 3080 – 3083; Angew. Chem.
Int. Ed. 2001, 40, 2992 – 2995; h) K. Juhl, K. A. Jørgensen, J. Am.
Chem. Soc. 2002, 124, 2420 – 2421; i) J. Thorhauge, M. Roberson,
R. G. Hazell, K. A. Jørgensen, Chem. Eur. J. 2002, 8, 1888 – 1898;
j) D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R.
Campos, B. T. Connell, R. J. Staples, J. Am. Chem. Soc. 1999,
121, 669 – 685; k) D. A. Evans, C. S. Burgey, M. C. Kozlowski,
S. W. Tregay, J. Am. Chem. Soc. 1999, 121, 686 – 699; l) D. A.
Evans, K. A. Scheidt, J. N. Johnston, M. C. Willis, J. Am. Chem.
Soc. 2001, 123, 4480 – 4491; m) D. A. Evans, D. M. Barnes, J. S.
Johnson, T. Lectka, P. von Matt, S. J. Miller, J. A. Murry, R. D.
Norcross, E. A. Shaughnessy, K. R. Campos, J. Am. Chem. Soc.
1999, 121, 7582 – 7594; n) D. A. Evans, S. J. Miller, T. Lectka, P.
von Matt, J. Am. Chem. Soc. 1999, 121, 7559 – 7573; o) D. A.
4930
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 4928 –4930