5098
C. M. Jessop et al. / Tetrahedron Letters 45 (2004) 5095–5098
J 18.6, 7.6, PCH2), 1.55 (2H, quintet, J 6.4, OCH2CH2),
1.40–1.30 (2H, m, CH2CH3), 1.30 (6H, t, 7.0,
2 · POCH2CH3), 0.91(3H, t, 7.3, CH2CH3); dC
(67.9 MHz, CDCl3) 70.6 (PCH2CH2O), 64.4 (OCH2),
61.5 (d, JCP 6, POCH2), 31.6 (OCH2CH2), 28.9 (d, JCP
138, PCH2), 19.1 (CH2CH3), 16.3 (d, JCP 7,
2 · POCH2CH3), 13.7 (CH3); m=z (CI, NH3) 239
(M+Hþ, 100%); Found 239.1405. C10H24O4P requires
for M+Hþ, 239.1412.
References and notes
J
J
ꢁ
1. See, for example: (a) Deprele, S.; Montchamp, J.-L. J.
Org. Chem. 2001, 66, 6745–6755; (b) Herpin, T. F.;
Motherwell, W. B.; Roberts, B. P.; Roland, S.; Weibel,
J.-M. Tetrahedron 1997, 53, 15085–15100; (c) Lopin, C.;
Gautier, A.; Gouhier, G.; Piettre, S. R. Tetrahedron Lett.
2000, 41, 10195–10200; (d) Dubert, O.; Gautier, A.;
Condamine, E.; Piettre, S. R. Org. Lett. 2002, 4, 359–
362; (e) Piettre, S. R. Tetrahedron Lett. 1996, 37, 2233–
2236; (f) Piettre, S. R. Tetrahedron Lett. 1996, 37, 4707–
4710; (g) Rey, P.; Taillades, J.; Rossi, J. C.; Gros, G.
Tetrahedron Lett. 2003, 44, 6169–6171.
7. (a) Gurjar, M. K.; Krishna, L. M.; Reddy, B. S.;
Chorghade, M. S. Synthesis 2000, 557–560; (b) Ghosh,
S.; Raychaudhuri, S. R.; Salomon, R. G. J. Org. Chem.
1987, 52, 83–90; (c) Nakajima, R.; Urabe, H.; Sato, F.
Chem. Lett. 2002, 4–5; (d) McMurry, J. E.; Kocovsky, P.
Tetrahedron Lett. 1985, 26, 2171–2172.
2. Jessop, C. M.; Parsons, A. F.; Routledge, A.; Irvine, D.
Tetrahedron Lett. 2003, 44, 479–483.
8. For related alkoxymethyl radical cyclisations, see: (a)
Rawal, V. H.; Singh, S. P.; Dufour, C.; Michoud, C. J.
Org. Chem. 1993, 58, 7718–7727; (b) Lolkema, L. D. M.;
Hiemstra, H.; Al Ghouch, A. A.; Speckamp, W. N.
Tetrahedron Lett. 1991, 32, 1491–1494.
9. For the major diastereoisomer of 15, a correlation between
H6 and the C-5 methyl group was observed in the NOESY
spectrum. Correlations between H2 and H6 were observed
for both isomers of 15, which suggest that the minor
diastereoisomers of 15 and 17 have the all cis-stereochem-
istry.
3. (a) Gautier, A.; Garipova, G.; Dubert, O.; Oulyadi, H.;
Piettre, S. R. Tetrahedron Lett. 2001, 42, 5673–5676; (b)
Trofimov, B. A.; Khil’ko, M. Y.; Nedolya, N. A.;
Vyalykh, E. P. J. Org. Chem. USSR (Engl. Transl.)
1981, 17, 1038–1040; (c) Brel’, A. K.; Tyurenkov, I. N.;
Strel’tsova, G. V.; Matyukhova, N. P.; Nazarenko, V. N.;
Agarkova, N. S. Pharm. Chem. J. (Engl. Transl.) 1988, 22,
118–120; (d) Nishiwaki, T. Tetrahedron 1965, 21, 3043–
3049.
4. See, for example: (a) Diana, G. D.; Zalay, E. S.; Salvador,
U. J.; Pancic, F.; Steinberg, B. J. Med. Chem. 1984, 27,
691–694; (b) Yoshino, K.; Kohno, T.; Morita, T.;
Tsukamoto, G. J. Med. Chem. 1989, 32, 1528–1532; (c)
Kelley, J. L.; Linn, J. A.; McLean, E. W.; Tuttle, J. V. J.
Med. Chem. 1993, 36, 3455–3463; (d) Hakimelahi, G. H.;
Moosavi-Movahedi, A. A.; Sadeghi, M. M.; Tsay, S.-C.;
Hwu, J. R. J. Med. Chem. 1995, 38, 4648–4659; (e) Liu,
H.; Li, W.; Kim, C. U. Bioorg. Med. Chem. Lett. 1997, 7,
1419–1420; (f) Cermak, D. M.; Wiemer, D. F.; Lewis, K.;
Hohl, R. J. Bioorg. Med. Chem. 2000, 8, 2729–2737; (g)
Williams, D. M.; Jakeman, D. L.; Vyle, J. S.; Williamson,
M. P.; Blackburn, G. M. Bioorg. Med. Chem. Lett. 1998,
8, 2603–2608.
ꢀ
10. Keller-Juslen, C.; King, H. D.; Kuhn, M.; Loosli, H.-R.;
Pache, W.; Petcher, T. J.; Weber, H. P.; Wartburg, A. J.
Antibiot. 1982, 35, 142–150.
11. Hori, K.; Hikage, N.; Inagaki, A.; Mori, S.; Nomura, K.;
Yoshii, E. J. Org. Chem. 1992, 57, 2888–2902.
12. Dixon, D. J.; Ley, S. V.; Reynolds, D. J. Chem. Eur. J.
2002, 8, 1621–1636.
13. Sulfides, sulfoxides and sulfones are known to undergo
similar eliminations: (a) Maezaki, N.; Izumi, M.; Yuyama,
S.; Sawamoto, H.; Iwata, C.; Tanaka, T. Tetrahedron
2000, 56, 7927–7945; (b) Barnes, N. J.; Davidson, A. H.;
Hughes, L. R.; Procter, G. J. Chem. Soc., Chem. Commun.
ꢀ
1985, 1292–1294; (c) Caturla, F.; Najera, C. Tetrahedron
5. All new compounds gave consistent spectral and high
resolution mass spectroscopic data.
1997, 53, 11449–11464; (d) Krief, A.; Kenda, B.; Remacle,
B. Tetrahedron 1996, 52, 7435–7463.
6. Typical experimental procedure: To a stirred solution of
diethyl phosphite (1.38 g, 10.0 mmol) in cyclohexane
14. Subsequent oxidative cleavage (OsO4/NaIO4 or O3) and
Wittig reaction of alcohol (25, R@H) was less efficient
than for benzyl carbonate (25, R@CO2Bn).
15. Shue, Y.-K.; Carrera, G. M.; Tufano, M. D.; Nadzan, A.
M. J. Org. Chem. 1991, 56, 2107–2111.
16. Reaction of (26, R@H) with 0.2 equiv of tBuOK at )65 ꢁC
afforded the C-2 epimer of tetrahydrofuran 21.
17. Tetronasin (M139603) has a similar structure to 19 but has
opposite configurations at the 10 common chiral centres.
(a) Hori, K.; Kazuno, H.; Nomura, K.; Yoshii, E.
Tetrahedron Lett. 1993, 34, 2183–2186; (b) Ley, S. V.;
Brown, D. S.; Clase, J. A.; Fairbanks, A. J.; Lennon, I. C.;
(15 cm3) was added n-butyl vinyl ether
1 (100 mg,
1.0 mmol) and a 1 M solution of triethylborane in hexanes
(0.3 cm3, 0.3 mmol) at ambient temperature. After 6 h,
further triethylborane (0.3 cm3, 0.3 mmol, 1M solution in
hexanes) was added and the mixture stirred for 48 h while
adding triethylborane (3 · 0.3 cm3, 3 · 0.3 mmol, 1M solu-
tion in hexanes) over this period. The mixture was then
concentrated in vacuo. Excess diethyl phosphite was
removed by kugelrohr distillation (75 ꢁC, 2 mmHg). Puri-
fication by column chromatography on silica (ethyl
acetate) afforded O,O-diethyl 2-butoxyethyl-phosphonate
2 (235 mg, 99%) as a colourless oil. Rf 0.4 (ethyl acetate);
mmax (CH2Cl2) 2983 (s), 2962 (s), 2873 (s), 1245 (s, P@O),
1099 (s, P–O), 962 (s) cmꢁ1; dH (400 MHz, CDCl3) 4.18–
4.05 (4H, m, 2 · POCH2), 3.66 (2H, dt, J 11.6, 7.3,
PCH2CH2O), 3.43 (2H, t, J 6.4, OCH2), 2.11 (2H, dt,
ꢀ
Osborn, H. M. I.; Stokes (nee Owen), E. S. E.; Wads-
worth, D. J. J. Chem. Soc., Perkin Trans. 1 1998, 2259–
2276; (c) Martinek, T.; Riddell, F. G.; Rutherford, T. J.;
Sareth, S.; Weller, C. T. Chem. Commun. 1998, 1893–
1894.