Communications
[2] B. E. Evans,K. E. Rittle,M. G. Bock,R. M. DiPrado,R. M.
Freidinger,W. L. Whitter,G. F. Lundell,D. F. Veber,P. S.
Anderson,R. S. L. Chang,V. J. Lotti,D. J. Cerino,T. B. Chen,
P. J. Cling,K. A. Kunkel,J. P. Springer,J. Hershfield,
Chem. 1988, 31,2235 – 2246.
J. Med.
[3] a) W. P. Walters,M. Ajay,M. A. Murko, Curr. Opin. Chem. Biol.
1999, 3,384 – 387; b) G. W. Bemis,M. A. Murko, J. Med. Chem.
1996, 39,2887 – 2893; c) A. K. Ghose,V. N. Vishwanadhan,J. J.
Wendolosky, J. Comb. Chem. 1999, 1,55 – 68. d) M.-L. Lee,G.
Schneider, J. Comb. Chem. 2001, 3,284 – 289.
[4] For a review,see: P. Arya,R. Joseph,D. T. H. Chou, Chem. Biol.
2002, 9,145 – 156.
[5] a) F. Perron,K. F. Albizati, Chem. Rev. 1989, 89,1617 – 1661;
b) K. T. Mead,B. N. Brewer, Curr. Org. Chem. 2003, 7,227 – 256.
[6] B. A. Kulkarni,G. P. Roth,E. Lobkovsky,J. A. PorcoJ, r.,
J.
Comb. Chem. 2002, 4,56 – 72.
[7] a) H. Huang,C. Mao,S.-T. Jan,F. M. Uckun, Tetrahedron Lett.
2000, 41,1699 – 1702; b) M. Uckun,C. Mao,A. O. Vassilev,H.
Huang,S. T. Jan, Bioorg. Med. Chem. Lett. 2000, 10,541 – 545;
c) S. Mitsuhashi,H. Shima,T. Kawamura,K. Kikuchi,M.
Oikawa,A. Ichihara,H. Oikawa, Bioorg. Med. Chem. Lett. 1999,
9,2007 – 2012.
Scheme 5. Solid-phase synthesis of the spiroketals 22, 24, and 26; for reac-
tion conditions, see Scheme 4.
[8] R. Haag,A. G. Leach,S. V. Ley,M. Nettekoven,J. Schnaubelt,
Synth. Commun. 2001, 31,2965 – 2977.
[9] For iterative aldol reactions on a solid support,see: a) M.
Reggelin,V. Brenig, Tetrahedron Lett. 1996, 37,6851 – 6852;
b) C. Gennari,S. Ceccarelli,U. Piarulli,K. Aboutayab,M.
Donghi,I. Paterson, Tetrahedron 1998, 54,14999 – 15016; c) I.
isomers in a ratio of 90:7:3 (Scheme 6; determined by GC–
MS). Thus,in both aldol reactions of the chiral enolate 19 with
the enantiomeric aldehydes 23 and 27 the anti adduct is
Paterson,M. Donghi,K. Gerlach,
Angew. Chem. 2000, 112,
3453 – 3457; Angew. Chem. Int. Ed. 2000, 39,3315 – 3319; d) I.
Paterson,T. Temal-Laib, Org. Lett. 2002, 4,2473 – 2476.
[10] For the use of polymer-bound enolates in different reactions,
see: a) P. M. Worster,C. R. McArthur,C. C. Leznoff, Angew.
Chem. 1979, 91,255; Angew. Chem. Int. Ed. Engl. 1979, 18,221 –
222; b) S. M. Jelin,S. J. Shuttleworth, Tetrahedron Lett. 1996, 37,
8023 – 8026; c) K. Burgess,D. Lim, Chem. Commun. 1997,785 –
786.
[11] a) I. Paterson,J. M. Goodman,M. A. Lister,R. C. Schuman,
C. K. McClure,R. D. Norcross, Tetrahedron 1990, 46,4663 –
4684; b) I. Paterson,A. N. Hulme, J. Org. Chem. 1995, 60,
3288 – 3300.
[12] a) H. C. Brown,R. K. Dhar,R. K. Bakshi,P. K. Pandiarajan,B.
Singaran, J. Am. Chem. Soc. 1989, 111,3441 – 3442; b) D. A.
Evans,D. L. Rieger,M. T. Bilodeau,F. Urpi, J. Am. Chem. Soc.
1991, 113,1047 – 1049; c) I. Paterson,M. V. Perkins, Tetrahedron
Lett. 1992, 33,801 – 804.
Scheme 6. Double diastereodifferentiation in the aldol reaction on the
solid support.
[13] The syn configuration of the aldol adduct 12 was assigned based
on the coupling constant of J = 4.7 Hz for CH(OH)CH(CH3)
and CH(OH)CH(CH3) of the deprotected adduct and compar-
ison with literature values.[11] The diastereomeric ratio was
determined by HPLC of the crude product; the ee value by GC
on a chiral phase and by NMR spectroscopy in the presence of a
chiral europium shift reagent. The anti configuration of the aldol
adduct 14 was assigned based on the coupling constant of J =
9.7 Hz for CH(OH)CH(CH3) and CH(OH)CH(CH3) and com-
parison with literature values.[12] The diastereomeric ratio was
formed as the major product. In accordance with related
findings[18] the combination of 19 with 23 represents the
matched case and the combination of 19 with 27 the
mismatched case.
Received: December 22,2003 [Z53609]
1
determined by HPLC and H NMR spectroscopy of the crude
reaction mixture (see Supporting Information). Analysis of the
crude product 15 (Scheme 4) by GC–MS showed only one
spiroketal stereoisomer. Analytical data for compound 15: Rf =
Keywords: asymmetric synthesis · chemical biology ·
.
natural products · solid-phase synthesis · spiro compounds
0.34 (silica gel,cyclohexane),[ a]2D0 = +104.4 (c = 0.80,CHCl 3),
ꢀ1
IR (KBr): n˜max = 3015,2859,1255 cm
;
1H NMR (400 MHz,
CDCl3): d = 4.27 (dt, J1 = 11.5, J2 = 4.9 Hz,1H),3.70–3.59 (m,
4H),3.53–3.50 (m,1H),2.17–2.10 (m,1H),1.82–1.45 (m,4H),
1.39–1.34 (m,1H),1.15 (d, J = 6.6 Hz,3H),1.03 (d, J = 6.8 Hz,
3H),0.89 (s,9H),0.88 (s,9H),0.51 (s,3H),0.04 ppm (s,9H);
13C NMR (100 MHz,CDCl 3): d = 102.7,72.7,66.9,59.3,58.0,
[1] R. Breinbauer,I. Vetter,H. Waldmann, Angew. Chem. 2002, 114,
3002 – 3150; Angew. Chem. Int. Ed. 2002, 41,2878 – 2890,and
references therein.
3198
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 3195 –3199