Page 5 of 6
ACS Catalysis
6711−6714. (b) Tobisu, M.; Takahira, T.; Ohtsuki, A.; Chatani, N.
Alkyl Chains. ACS Catal. 2017, 7, 4491−4496. (c) Guo, L.; Liu, X.;
Baumann, C.; Rueping, M. Nickel-Catalyzed Alkoxy–Alkyl Intercon-
version with Alkylborane Reagents through C−O Bond Activation of
Aryl and Enol Ethers. Angew. Chem. Int. Ed. 2016, 55, 15415–15419.
[16] (a) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C.
Metal-Free Carbon–Carbon Bond-Forming Reductive Coupling Be-
tween Boronic Acids and Tosylhydrazones. Nat. Chem. 2009, 1, 494-
499. (b) Barluenga, J.; Valdés, C. Tosylhydrazones: New Uses for
Classic Reagents in Palladium-Catalyzed Cross-Coupling and Metal-
Free Reactions. Angew. Chem. Int. Ed. 2011, 50, 7486–7500. (c)
Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. N-Tosylhydrazones as
Reagents for Cross-Coupling Reactions: A Route to Polysubstituted
Olefins. Angew. Chem. Int. Ed. 2007, 46, 5587–5590.
[17] (a) Peng, C.; Cheng, J.; Wang, J. Palladium-Catalyzed Cross-
Coupling of Aryl or Vinyl Iodides with Ethyl Diazoacetate. J. Am.
Chem. Soc. 2007, 129, 8708–8709. For reviews, see: (b) Xia, Y.; Qiu,
D.; Wang, J. Transition-Metal-Catalyzed Cross-Couplings through
Carbene Migratory Insertion. Chem. Rev. 2017, 117, 13810-13889. (c)
Xia, Y.; Wang, J. N-Tosylhydrazones: Versatile Synthons in the Con-
struction of Cyclic Compounds. Chem. Soc. Rev. 2017, 46, 2306–
2362. (d) Xiao, Q.; Zhang, Y.; Wang, J. Diazo Compounds and N-
Tosylhydrazones: Novel Cross-Coupling Partners in Transition-
Metal-Catalyzed Reactions. Acc. Chem. Res. 2013, 46, 236-247.
[18] For reviews, see: (a) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.;
Maguire, A. R.; McKervey, M. A. Modern Organic Synthesis with α-
Diazocarbonyl Compounds. Chem. Rev. 2015, 115, 9981–10080. (b)
Shao, Z.; Zhang, H. N-Tosylhydrazones: Versatile Reagents for Met-
al-Catalyzed and Metal-Free Cross-Coupling Reactions. Chem. Soc.
Rev. 2012, 41, 560-572.
[19] (a) Wang, H.; Dai, X.-J.; Li, C.-J. Aldehydes as Alkyl Carbanion
Equivalents for Additions to Carbonyl Compounds. Nat. Chem. 2017,
9, 374–378. (b) Dai, X.-J.; Wang, H.; Li, C.-J. Carbonyls as Latent
Alkyl Carbanions for Conjugate Additions. Angew. Chem. Int. Ed.
2017, 56, 6302–6306. (c) Chen, N.; Dai, X.-J.; Wang, H.; Li, C.-J.
Umpolung Addition of Aldehydes to Aryl Imines. Angew. Chem. Int.
Ed. 2017, 56, 6260–6263. (d) Wei, W.; Dai, X.-J.; Wang, H.; Li, C.;
Yang, X.; Li, C.-J. Ruthenium(II)-Catalyzed Olefination via Carbonyl
Reductive Cross-Coupling. Chem. Sci. 2017, 8, 8193–8197.
[20] Tang, J.; Lv, L.; Dai, X.-J.; Li, C.-C.; Li, L.; Li, C.-J. Nickel-
Catalyzed Cross-Coupling of Aldehydes with Aryl Halides via Hy-
drazone Intermediates. Chem. Commun. 2018, 54, 1750-1753.
[21] Schwarzer, M. C.; Konno, R.; Hojo, T.; Ohtsuki, A.; Nakamura,
K.; Yasutome, A.; Takahashi, H.; Shimasaki, T.; Tobisu, M.; Chatani,
N.; Mori, S. Combined Theoretical and Experimental Studies of
Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Aryl-
boronic Esters via C–O Bond Cleavage. J. Am. Chem. Soc. 2017, 139,
10347−10358.
Nickel-Catalyzed Alkynylation of Anisoles via C–O Bond Cleavage.
Org. Lett. 2015, 17, 680−683. For reviews, see: (c) Tobisu, M.;
Chatani, N. Nickel-Catalyzed Cross-Coupling Reactions of Unreac-
tive Phenolic Electrophiles via C–O Bond Activation. Top. Curr.
Chem. (Z) 2016, 374, 41. (d) Tobisu, M.; Chatani, N. Cross-
Couplings Using Aryl Ethers via C–O Bond Activation Enabled by
Nickel Catalysts. Acc. Chem. Res. 2015, 48, 1717−1726.
[7] (a) lvarez-Bercedo, P.; Martin, R. Ni-Catalyzed Reduction of
Inert C−O Bonds: A New Strategy for Using Aryl Ethers as Easily
Removable Directing Groups. J. Am. Chem. Soc. 2010, 132,
17352−17353. For reviews, see: (b) Cornella, J.; Zarate, C.; Martin, R.
Metal-Catalyzed Activation of Ethers via C–O Bond Cleavage: a New
Strategy for Molecular Diversity. Chem. Soc. Rev. 2014, 43,
8081−8097. (c) Correa, A.; Cornella, J.; Martin, R. Nickel-Catalyzed
Decarbonylative C-H Coupling Reactions: A Strategy for Preparing
Bis(heteroaryl) Backbones. Angew. Chem. Int. Ed. 2013, 52,
1878−1880.
[8] Leiendecker, M.; Hsiao, C.-C.; Guo, L.; Alandini, N.; Rueping, M.
Metal-Catalyzed Dealkoxylative Caryl-Csp3 Cross-Coupling—
Replacement of Aromatic Methoxy Groups of Aryl Ethers by Em-
ploying a Functionalized Nucleophile. Angew. Chem. Int. Ed. 2014,
53, 12912−12915.
[9] (a) Jin, Z.; Li, Y.-J.; Ma, Y.-Q.; Qiu, L.-L.; Fang, J.-X. Biphenyl-
Based Diaminophosphine Oxides as Air-Stable Preligands for the
Nickel-Catalyzed Kumada–Tamao–Corriu Coupling of Deactivated
Aryl Chlorides, Fluorides, and Tosylates. Chem. Eur. J. 2012, 18,
446–450. (b) Wang, C.; Ozaki, T.; Takita, R.; Uchiyama, M. Aryl
Ether as a Negishi Coupling Partner: An Approach for Constructing
C-C Bonds under Mild Conditions. Chem. Eur. J. 2012, 18,
3482−3485. (c) Schade, M. A.; Metzger, A.; Hug, S.; Knochel, P.
Nickel-Catalyzed Cross-Coupling Reactions of Benzyliczinc Rea-
gents with Aromatic Bromides, Chlorides and Tosylates. Chem.
Commun. 2008, 0, 3046-3048.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[10] Tobisu, M.; Shimasaki, T.; Chatani, N. Nickel-Catalyzed Cross-
Coupling of Aryl Methyl Ethers with Aryl Boronic Esters. Angew.
Chem. Int. Ed. 2008, 47, 4866-4869.
[11] Quasdorf, K. W.; Tian, X.; Garg, N. K. Cross-Coupling Reac-
tions of Aryl Pivalates with Boronic Acids. J. Am. Chem. Soc. 2008,
130, 14422-14423.
[12] Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. Biaryl
Construction via Ni-Catalyzed C−O Activation of Phenolic Carbox-
ylates. J. Am. Chem. Soc. 2008, 130, 14468-14470.
[13] Antoft-Finch, A.; Blackburn, T.; Snieckus, V. N,N-Diethyl O-
Carbamate: Directed Metalation Group and Orthogonal Suzu-
ki−Miyaura Cross-Coupling Partner. J. Am. Chem. Soc. 2009, 131,
17750–17752.
[14] (a) Molander, G. A.; Beaumard, F. Cross-Coupling of Mesylated
Phenol Derivatives with Potassium Ammonio- and Amidomethyltri-
fluoroborates. Org. Lett. 2011, 13, 1242–1245. (b) Tang, Z.-Y.; Hu,
Q.-S. Room-Temperature Ni(0)-Catalyzed Cross-Coupling Reactions
of Aryl Arenesulfonates with Arylboronic Acids. J. Am. Chem. Soc.
2004, 126, 3058-3059. (c) Ngyuen, H. N.; Huang, X.; Buchwald, S. L.
The First General Palladium Catalyst for the Suzuki−Miyaura and
Carbonyl Enolate Coupling of Aryl Arenesulfonates. J. Am. Chem.
Soc. 2003, 125, 11818-11819.
[15] (a) Chatupheeraphat, A.; Liao, H.-H.; Srimontree, W.; Guo, L.;
Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. Ligand-
Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Acti-
vation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-
Couplings. J. Am. Chem. Soc. 2018, 140, 3724-3735. (b) Liu, X.; Jia,
J.; Rueping, M. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of
Esters: Direct Replacement of the Ester Moiety by Functionalized
[22] Muto, K.; Yamaguchi, J.; Lei, A.; Itami, K. Isolation, Structure,
and Reactivity of an Aryl nickel(II) Pivalate Complex in Catalytic C–
H/C–O Biaryl Coupling. J. Am. Chem. Soc. 2013, 135, 16384−16387.
[23] Cornella, J.; G mez-Bengoa, E.; Martin, R. Combined Experi-
mental and Theoretical Study on the Reductive Cleavage of Inert C–O
Bonds with Silanes: Ruling out a Classical Ni(0)/Ni(II) Catalytic
Couple and Evidence for Ni(I) Intermediates. J. Am. Chem. Soc. 2013,
135, 1997−2009.
[24] Though many efforts tried to isolate intermediate F was failure
due to it’s high instability, we speculated that denitrogenation oc-
curred more likely after transmetallation. See reference: Takemiya, A.;
Hartwig, J. F. Palladium-Catalyzed Synthesis of Aryl Ketones by
Coupling of Aryl Bromides with an Acyl Anion Equivalent. J. Am.
Chem. Soc. 2006, 128, 14800–14801.
ACS Paragon Plus Environment