3766
Organometallics 2004, 23, 3766-3768
P ostm eta la tion Liga n d Mod ifica tion on th e P er ip h er y of
a Dir u th en iu m Com p ou n d : Tow a r d Novel Meta lla yn e
Sca ffold in gs
Wei-Zhong Chen and Tong Ren*
Department of Chemistry and Center for Supramolecular Science, University of Miami,
Coral Gables, Florida 33146
Received April 26, 2004
Summary: A diruthenium compound bearing a periph-
eral iodo substituent cross-couples with acetylenes under
Sonogashira conditions to yield a novel family of diru-
thenium compounds bearing a peripheral alkyne func-
tionality, which can be further functionalized at the axial
positions via a reaction with lithiated butadiynyl.
Boosted by the immense interest in carbon-rich
materials such as fullerenes and carbon nanotubes,
there have been growing efforts in recent years in both
the synthesis of new metallaynes1 and their material
applications as nonlinear optical chromophores2 and
active species in molecular electronic devices.3 Equally
exciting is the possibility of using metallaynes as
scaffoldings for 2-D and 3-D carbon-rich networks that
may rival fullerene in both the beauty and diversity of
material properties.4 Our laboratory has reported a host
of diruthenium compounds bearing axial σ-ethynyl/
polyynyl ligands5 and demonstrated the facile electron
delocalization along the conjugated backbone.6 Ru2
metallaynes are both intense visible-near-infrared
chromophores and excellent electrophores with multiple
reversible redox couples over a broad potential window.5
Clearly of great interest is whether Ru2 metallaynes can
be (i) incorporated in 2- and 3-D supramolecular as-
semblies and (ii) used as the reporter group in chemical
and biochemical sensors. To achieve these objectives,
Ru2 metallaynes need to be functionalized in the direc-
tion(s) orthogonal to the Ru2-σ-alkynyl vector, and our
initial exploratory efforts are described in this contribu-
tion.
F igu r e 1. ORTEP representation of molecule 1 at the 30%
probability level. Selected bond lengths (Å): Ru1-Ru2,
2.3220(7); Ru1-Cl, 2.405(2).
(OAc)Cl type compounds (LL
) N,N′-diarylform-
amidinate). Ru2(DmAniF)3(OAc)Cl (1; DmAniF is
N,N′-bis(m-methoxyphenyl)formamidinate) was obtained
in 87% yield using a modification of the recently
published procedures,7 and its molecular structure is
provided in Figure 1. As shown in Scheme 1, the ace-
tate in compound 1 can be readily displaced with
N,N′-dimethyl-4-iodobenzamidinate (I-DMBA) to yield
Ru2II,III(DmAniF)3(I-DMBA)Cl (2). The presence of the
iodo substituent gives access to a variety of Pd-catalyzed
cross-coupling reactions.8 Hence, treating 2 with the
terminal alkynes HCtCY (Y ) SiiPr3, Fc) under Sono-
gashira conditions furnished compounds 3a ,b. To our
knowledge, the conversion of 2 to 3 is the first example
of postmetalation modification of a bridging ligand in a
paddle-wheel species by design. Compounds 3a ,b re-
acted with 3 equiv of LiC4SiMe3 to yield trans-bis-
(butadiynyl) derivatives 4a ,b analogous to the estab-
lished alkynylation chemistry of diruthenium com-
pounds.5 We also sought an alternative route to 4:
treating 2 with 3 equiv of LiC4SiMe3 resulted in trans-
Ru2III,III(DmAniF)3(I-DMBA)(C4SiMe3)2 (5; 46%). How-
ever, the reaction between 5 and HC2Y under Sono-
gashira conditions yielded a mixture of Ru2 compounds
Critical to the orthogonal functionalization of
Ru2-metallayne is the accessibility of the Ru2II,III(LL)3-
* To whom correspondence should be addressed. E-mail: tren@
miami.edu. Tel: (305) 284-6617. Fax: (305) 284-1880.
(1) (a) Low, P. J .; Bruce, M. I. Adv. Organomet. Chem. 2001, 48, 71.
(b) Manna, J .; J ohn, K. D.; Hopkins, M. D. Adv. Organomet. Chem.
1995, 38, 79. (c) Special Issues on Carbon Rich Organometallics: J .
Organomet. Chem. 2003, 683. (d) Szafert, S.; Gladysz, J . A. Chem. Rev.
2003, 103, 4175. (e) Bruce, M. I.; Low, P. J . Adv. Organomet. Chem.
2004, 50, 179.
(2) (a) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc,
M. Adv. Organomet. Chem. 1998, 42, 291. (b) Ibid. 1999, 43, 349.
(3) (a) Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 431.
(b) Schull, T. L.; Kushmerick, J . G.; Patterson, C. H.; George, C.; Moore,
M. H.; Pollack, S. K.; Shashidhar, R. J . Am. Chem. Soc. 2003, 125,
3202.
(4) (a) Bunz, U. H. F. J . Organomet. Chem. 2003, 683, 269. (b) Bunz,
U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc. Rev. 1999, 28, 107. (c)
Diederich, F. Nature 1994, 369, 199.
(5) (a) Ren, T.; Xu, G.-L. Comments Inorg. Chem. 2002, 23, 355. (b)
Hurst, S. K.; Ren, T. J . Organomet. Chem. 2003, 670, 188.
(6) (a) Ren, T.; Zou, G.; Alvarez, J . C. Chem. Commun. 2000, 1197.
(b) Xu, G.-L.; Zou, G.; Ni, Y.-H.; DeRosa, M. C.; Crutchley, R. J .; Ren,
T. J . Am. Chem. Soc. 2003, 125, 10057. (c) Xu, G.-L.; DeRosa, M. C.;
Crutchley, R. J .; Ren, T. J . Am. Chem. Soc. 2004, 126, 3728.
(7) (a) Angaridis, P.; Berry, J . F.; Cotton, F. A.; Lei, P.; Lin, C.;
Murillo, C. A.; Villagra´n, D. Inorg. Chem. Commun. 2004, 7, 9. (b)
Barral, M. C.; Herrero, S.; J ime´nez-Aparicio, R.; Torres, M. R.;
Urbanos, F. A. Inorg. Chem. Commun. 2004, 7, 42. (c) Ren, T.; DeSilva,
V.; Zou, G.; Lin, C.; Daniels, L. M.; Campana, C. F.; Alvarez, J . C.
Inorg. Chem. Commun. 1999, 2, 301.
(8) (a) Metal-catalyzed Cross-coupling Reactions; Diederich, F.,
Stang, P. J ., Eds.; Wiley-VCH: Weinheim, Germany, 1998. (b) Brands-
ma, L. Preparative Acetylenic Chemistry; Elsevier: Amsterdam, 1988.
(c) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int.
Ed. 2000, 39, 2632.
10.1021/om049702d CCC: $27.50 © 2004 American Chemical Society
Publication on Web 07/02/2004