4
Tetrahedron
M., Gujral, J., Reddy, G. S., Chem.-Eur. J., 2015, 21, 16775; (c)
Ramachary, D. B., Shashank, A. B., Karthik, S., Angew. Chem., Int.
Ed., 2014, 53, 10420; (d) Li, W., Du, Z., Huang, J., Jia, Q., Zhang,
K., Wang, J., Green Chem., 2014, 16, 3003; (e) Wang, L., Peng, S.,
Danence, L. J., Gao, Y., Wang, J., Chem. - Eur. J., 2012, 18, 6088.
10 (a) Kalisiak, J., Sharpless, K. B., Fokin, V. V., Org. Lett., 2008, 10,
3171; (b) Kamijo, S., Jin, T., Huo, Z., Yamamoto, Y., J. Org. Chem.,
2004, 69, 2386; (c) Kamijo, S., Jin, T., Huo, Z., Yamamoto, Y., J.
Am. Chem. Soc., 2003, 125, 7786.
Scheme 4. Plausible mechanism for the N2-sulfonylation of NH-
triazoles.
11 For the selective N2-functionalization of triazoles, see: (a) Wei, H.,
Hu, Q., Ma, Y., Wei, L., Liu, J., Shi, M., Wang, F., Asian J. Org.
Chem., 2017, 6, 662; (b) Deng, X., Lei, X., Nie, G., Jia, L., Li, Y.,
Chen, Y., J. Org. Chem., 2017, 82, 6163; (c) Motornov, V. A.,
Tabolin, A. A., Novikov, R. A., Nelyubina, Y. V., Ioffe, S. L.,
Smolyar, I. V., Nenajdenko, V. G., Eur. J. Org. Chem., 2017, 6851;
(d) Bhagat, U. K., Kamaluddin, Peddinti, R. K., Tetrahedron Lett.,
2017, 58, 298; (e) Zhu, L.-L., Xu, X.-Q., Shi, J.-W., Chen, B.-L.,
Chen, Z., J. Org. Chem., 2016, 81, 3568; (f) Zhu, L.-L., Xu, X.-Q.,
Shi, J.-W., Chen, B.-L., Chen, Z., J. Org. Chem., 2016, 81, 3568; (g)
Wen, J., Zhu, L.-L., Bi, Q.-W., Shen, Z.-Q., Li, X.-X., Li, X., Wang,
Z., Chen, Z., Chem. Eur. J., 2014, 20, 974; (h) Ueda, S., Su, M.,
Buchwald, S. L., Angew. Chem., Int. Ed., 2011, 50, 8944; (i) Wang,
X. J., Zhang, L., Krishnamurthy, D., Senanayake, C. H., Wipf, P.,
Org. Lett., 2010, 12, 4632; (j) Wang, X. J., Zhang, L., Lee, H.,
In conclusion, we have successfully developed a
highly regioselective, iodine-mediated sulfonylation reaction
of NH-1,2,3-triazoles using sodium sulfinates and
thiosulfonates to provide N-sulfonylated triazoles in
moderate to high yields. This protocol is operationally
simple and possesses a wide substrate scope, permitting the
synthesis of a range of N2-sulfonyl triazoles which can be
difficult to prepare by other methods.
Acknowledgements
Haddad, N., Krishnamurthy, D., Senanayake, C. H., Org. Lett., 2009
11, 5026; (k) Chen, Y., Liu, Y., Petersen, J. L., Shi, X., Chem.
Commun., 2008, 3254.
,
We thank SERB-ECR (File No. ECR/2015/000053), New
Delhi for financial assistance. RJR thanks to UGC for
faculty position under Faculty Recharge Programme. AS
and MW thanks to CSIR and UGC, New Delhi, respectively
for their research fellowship.
12 For a review on sulfinate salts, see: Aziz, J., Messaoudi, S., Alami,
M., Hamze, A., Org. Biomol. Chem., 2014, 12, 9743.
13 For the synthesis of sulfonamides using sodium sulfinates, see: (a)
Jiang, Y.-y., Wang, Q.-Q., Liang, S., Hu, L.-M., Little, R. D., Zeng,
C.-C., J. Org. Chem., 2016, 81, 4713; (b) Wei, W., Liu, C., Yang, D.,
Wen, J., You, J., Wang, H., Adv. Synth. Catal., 2015, 357, 987; (c)
Buathongjan, C., Beukeaw, D., Yotphan, S., Eur. J. Org. Chem.,
2015, 1575; (d) Yang, K., Ke, M., Lin, Y., Song, Q., Green Chem.,
2015, 17, 1395; (e) Pan, X., Gao, J., Liu, J., Lai, J., Jiang, H., Yuan,
G., Green Chem., 2015, 17, 1400.
14 For representative recent reviews, see: (a) Jia, M., Ma, S., Angew.
Chem., Int. Ed., 2016, 55, 9134; (b) Davies, H. M. L., Alford, J. S.,
Chem. Soc. Rev., 2014, 43, 5151; (c) Chattopadhyay, B., Gevorgyan,
V., Angew. Chem., Int. Ed., 2012, 51, 862.
References and Notes
1
For an excellent review on triazole applications, see: Huang, D.,
Zhao, P., Astruc, D., Coord. Chem. Rev. 2014, 272, 145.
2
Selected articles: (a) Mohammed, I., Kummetha, I. R., Singh, G.,
Sharova, N., Lichinchi, G., Dang, J., Stevenson, M., Rana, T. M., J.
Med. Chem. 2016, 59, 7677; (b) Bai, H., Zhu, P., Wu, W., Li, J., Ma,
Z., Zhang, W., Cheng, Y., Du, L., Li, M., Med. Chem. Commun.
2015, 6, 418; (c) Hsieh, H. Y., Lee, W. C., Senadi, G. C., Hu, W. P.,
Liang, J. J., Tsai, T. R., Chou, Y. W., Kuo, K. K., Chen, C. Y., Wang,
J. J. J. Med. Chem., 2013, 56, 5422; (d) Thirumurugan, P., Matosiuk,
D., Jozwiak, K. Chem. Rev., 2013, 113, 4905.
15 For the synthesis of N1-sulfonyl-4-substituted triazoles, see: (a) Cano,
I., Nicasio, M. C., Pérez, P. J., Org. Biomol. Chem., 2010, 8, 536; (b)
Wang, F., Fu, H., Jiang, Y., Zhao, Y., Adv. Synth. Catal., 2008, 350,
1830. 46; For synthesis of N1-sulfonyl-5-substituted triazoles: (c)
Meza-Aviña, M. E., Patel, M. K., Lee, C. B., Dietz, T. J., Croatt, M.
P., Org. Lett., 2011, 13, 2984.
3
For selected articles on materials, see: (a) Reed, D. A., Xiao, D. J.,
Gonzalez, M. I., Darago, L. E., Herm, Z. R., Grandjean, F., Long, J.
R., J. Am. Chem. Soc., 2016, 138, 5594; (b) Sood, R., Donnadio, A.,
Giancola, S., Kreisz, A., Jones, D. J., Cavaliere, S., ACS Appl. Mater.
Interfaces, 2016, 8, 16897; (c) Shida, N., Ishiguro, Y., Atobe, M.,
Fuchigami, T., Inagi, S., ACS Macro Lett., 2012, 1, 656.
16 The crystal structure of 3ia was deposited in the Cambridge
Crystallographic Data Centre (CCDC# 1816730).
17 Reddy, R. J., Waheed, Md., Karthik, T., Shankar, A., New J. Chem.,
2018, 42, 980.
18 The N2-regioselectivity of 3pa
, 3qa, 3sa, 3pb and 3sb was
4
5
For recent review articles, see: (a) Schulze, B., Schubert, U. S.,
Chem. Soc. Rev., 2014, 43, 2522; (b) Byrne, J. P., Kitchen, J. A.,
Gunnlaugsson, T., Chem. Soc. Rev., 2014, 43, 5302.
For representative reviews, see: (a) Johansson, J. R., Beke-Somfai,
T., Stålsmeden, A. S., Kann, N., Chem. Rev., 2016, 116, 14726 and
1
established on the basis of H NMR data comparison with isomeric
triazoles reported in the literature (see ESI, Table 2).
19 (a) Shyam, P. K., Jang, H.-Y., J. Org. Chem., 2017, 82, 1761; (b)
Shyam, P. K., Son, S., Jang, H.-Y., Eur. J. Org. Chem., 2017, 5025.
20 For the preparation of tosyl iodide, see: (a) Liu, L. K., Chi, Y., Jen,
K.-Y., J. Org. Chem., 1980, 45, 406 (b) Nájera, C., Bald, B., Yus, M.,
J. Chem. Soc. Perkin Trans. 1, 1988, 1029.
references herein; (b) Liang, L., Astruc, D., Coord. Chem. Rev., 2011
,
255, 2933; (c) Hein, J. E., Fokin, V. V., Chem. Soc. Rev., 2010, 39,
1302; (d) Meldal, M., Tornøe, C. W., Chem. Rev., 2008, 108, 2952.
(a) Chen, Y., Nie, G., Zhang, Q., Ma, S., Li, H., Hu, Q., Org. Lett.,
2015, 17, 1118; (b) Li, W., Du, Z., Zhang, K., Wang, J., Green
Chem., 2015, 17, 781; (c) Li, W., Wang, J., Angew. Chem., Int. Ed.,
2014, 53, 14186; (d) Janreddy, D., Kavala, V., Kuo, C. W., Chen, C.
W., Ramesh, C., Kotipalli, T., Kuo, T. S., Chen, M. L., He, C. H.,
Yao, C. F., Adv. Synth. Catal., 2013, 355, 2918.
6
7
8
9
For recent reviews on multicomponent strategies: (a) Chen, Z., Liu,
Z., Cao, G., Li, H., Rena, H., Adv. Synth. Catal., 2017, 359, 202; (b)
Wei, F., Wang, W., Ma, Y., Tunga, C.-H., Xu, Z., Chem. Commun.,
2016, 52, 14188; (c) Hassan, S., Müller, T. J. J.. Adv. Synth. Catal.,
2015, 357, 617.
For selected reports for azide-free reactions, see: (a) Panda, S., Maity,
P., Manna, D., Org. Lett., 2017, 19, 1534; (b) Bai, H.-W., Cai, Z.-J.,
Wang, S.-Y., Ji, S.-J., Org. Lett., 2015, 17, 2898; (c) Wan, J.-P., Cao,
S., Liu, Y., J. Org. Chem., 2015, 80, 9028; (d) Chen, J.-H., Liu, S.-R.,
Chen, K., Chem.-Asian J., 2010, 5, 328.
Selected reports: (a) Thomas, J., Jana, S.. Liekens, S., Dehaen, W.,
Chem. Commun., 2016, 52, 9236; (b) Ramachary, D. B., Krishna, P.