T. R. Webb et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3869–3873
3873
References and notes
1. Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Science 1981, 213,
1394.
2. Koob, G. F. Perspect. Behav. Med. 1985, 2, 39.
3. (a) Chang, C. P.; Pearse, R. I.; O’Connell, S.; Rosenfeld,
M. G. Neuron 1993, 11, 1187; (b) Chen, R.; Lewis, K. A.;
Perrin, M. H.; Vale, W. W. Proc. Natl. Acad. Sci. U.S.A.
1993, 90, 8967; (c) Vita, N.; Laurent, P.; Lefort, S.;
Chalon, P.; Lelias, J. M.; Kaghad, M.; Le, F. G.; Caput,
D.; Ferrara, P. FEBS Lett. 1993, 335, 1; (d) Perrin, M. H.;
Donaldson, C. J.; Chen, R.; Lewis, K. A.; Vale, W. W.
Endocrinology 1993, 133, 3058; (e) Liaw, C. W.; Loven-
berg, T. W.; Barry, G.; Oltersdorf, T.; Grigoriadis, D. E.;
De Souza, E. B. Endocrinology 1996, 137, 72; (f) Loven-
berg, T. W.; Liaw, C. W.; Grigoriadis, D. E.; Clevenger,
W.; Chalmers, D. T.; De Souza, E. B.; Oltersdorf, T. Proc.
Natl. Acad. Sci. U.S.A. 1995, 92, 836.
Figure 2. Overlay of low-energy conformers of compounds 2 (light
blue), 8b (yellow), 18 (green) and 19 (red).
4. (a) Owens, M. J.; Nemeroff, C. B. Pharmacol. Rev. 1991,
43, 425; (b) Holsboer, F. Curr. Opin. Invest. Drugs 2003, 4,
46.
5. Schulz, D. W.; Mansbach, R. S.; Sprouse, J.; Braselton, J.
P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.;
Schmidt, A. W.; Seeger, T.; Seymour, P.; Tingley, F. D.,
III; Winston, E. N.; Chen, Y. L.; Heym, J. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 10477.
6. For recent reviews, see: (a) Grigoriadis, D. E.; Haddach,
M.; Ling, N.; Saunders, J. Curr. Med. Chem. 2001, 1, 63;
(b) Saunders, J.; Williams, J. Prog. Med. Chem. 2003, 41,
195.
good match between the low-energy conformers of 2
and 8b. The phenyl ring of 18 or 19 was not aligned well
with that of 2 (Fig. 2). Since the methylene moiety of 18
is much more flexible than the gem-dimethyl substituted
carbon of 19, the correct conformer of 18 for receptor
binding will cost much less energy than that of 19. That
may explain why both 8b and 18 had similar binding
affinity while 19 was inactive.
7. Chen, C.; De Souza, E. B.; Grigoriadis, D. E.; Huang, C.
Q.; Kim, K. I.; Lui, Z.; Moran, T.; Webb, T. R.; Whitten,
J. P.; Xie, M.; McCarthy, J. R. J. Med. Chem. 1996, 39,
4358.
4. Conclusion
8. Sakasai, T.; Sakamoto, T.; Yamanaka, H. Heterocycles
1979, 13, 235.
9. Redd, J. T.; Bradshaw, J. S.; Huszthy, P.; Izatt, R. M. J.
Heterocycl. Chem. 1994, 31, 1047.
10. Yasuda, N.; Yamatani, T.; Ohnuki, T.; Okutsu, M. J.
Heterocycl. Chem. 1984, 21, 1845.
11. Kim, C. U.; Misco, P. F.; Buh, B. Y.; Mansuri, M. M.
Tetrahedron Lett. 1994, 35, 3019.
12. (a) Grigoriadis, D. E.; Liu, X. J.; Vaughn, J.; Palmer, S.
F.; True, C. D.; Vale, W. W.; Ling, N.; De Souza, E. B.
Mol. Pharmacol. 1996, 50, 679; (b) De Souza, E. B. J.
Neurosci. 1987, 7, 88.
The structure–activity relationships of the novel benzo-
ylpyrimidines as antagonists of the CRF1 receptor were
explored. Synthetic approaches were developed that
allowed for the facile divergent modification of the
6-aryl or the 4-amino substituents. The carbonyl func-
tionality of the benzoyl group was found to be the most
desirable among the carbon linkers explored. This is
probably related to a proper dihedral angle between the
two aromatic rings. Several potent compounds were
discovered during this study (e.g., 8d and 8e).
13. Hodge, C. N.; Aldrich, P. E.; Wasserman, Z. R.; Fernan-
dez, C. H.; Nemeth, G. A.; Arvanitis, A.; Cheeseman, R.
S.; Chorvat, R. J.; Ciganek, E.; Christos, T. E.; Gilligan,
P. J.; Krenitsky, P.; Scholfield, E.; Strucely, P. J. Med.
Chem. 1999, 42, 819.
14. Battaglia, G.; Webster, E. L.; De Souza, E. B. Synapse
1987, 1, 572–581.
15. MedChem Explorer Version 2.1.1., Accelrys, Inc., http://
Acknowledgements
This work was supported in part by a grant funded
through the Small Business Innovative Research (SBIR)
program at NIH, identification number 1R43
NS334879.