2092 Journal of Chemical and Engineering Data, Vol. 50, No. 6, 2005
(13) Dunbar, A.; Denison, G. M.; Omiatek, D. M.; Boyko, W. J.; Bessel,
C. A.; DeSimone, J. M. Bis(acetylacetone)ethylenediimine ligands
for copper chelation: applications to chemical mechanical pla-
narization. Chem Mater. Submitted for publication.
(14) Omiatek, D. M.; Thia, S. M.; Grotzinger, L. L.; Boyko, W. J.;
Bessel, C. A.; Weinstein, R. D. Use of dialkyldithiocarbamates
for chemical mechanical planarization in carbon dioxide. Chem.
Mater. Submitted for publication.
(15) Laintz, K. E.; Wai, C. M.; Yonker, C. R.; Smith, R. D. Solubility
of fluorinated metal diethyldithiocarbamates in supercritical
carbon dioxide. J. Supercrit. Fluids 1991, 4, 194-198.
(16) Laintz, K. E.; Yu, J.-J.; Wai, C. M. Separation of metal ions with
sodium bis(trifluoroethyl)dithicarbamate chelation and super-
critical fluid chromatography. Anal. Chem. 1992, 64, 311-315.
(17) Laintz, K. E.; Wai, C. M.; Yonker, C. R.; Smith, R. D. Extraction
of metal ions from liquid and solid materials by supercritical
carbon dioxide. Anal. Chem. 1992, 64, 2875-2878.
(18) Wang, J.; Marshall, W. D. Recovery of metals from aqueous media
by extraction with supercritical carbon dioxide. Anal. Chem. 1994,
66, 1658-1663.
(19) Lin, Y.; Smart, N. G.; Wai, C. M. Supercritical fluid extraction
and chromatography of metal chelates and organometallic com-
pounds. Trends Anal. Chem. 1995, 14, 123-133.
(20) Wai, C. M.; Wang, S. Solubility parameters and solubilities of
metal dithiocarbamates in supercritical carbon dioxide. Anal.
Chem. 1996, 68, 3516-3519.
(21) Wai, C. M.; Wang, S.; Liu, Y.; Lopez-Avila, V.; Beckert, W. F.
Evaluation of dithiocarbamates and â-diketones as chelating
agents in supercritical fluid extraction of Cd, Pb, and Hg from
solid samples. Talanta 1996, 43, 2083-2091.
(22) Ager, P.; Marshall, W. D. Mobilisation/purging of copper, chro-
mium and arsenic ions from aqueous media into supercritical
carbon dioxide. Spectrochim. Acta, Part B 1998, 53, 881-891.
(23) Erkey, C. Supercritical carbon dioxide extraction of metals from
aqueous solutions: a review. J. Supercrit. Fluids 2000, 17, 259-
287.
(24) Wai, C. M.; Wang, S. Separation of metal chelates and organo-
metallic compounds by SFC and SFE/GC. J. Biochem. Biophys.
Methods 2000, 43, 273-293.
(25) Cui, H.; Wang, T.; Shen, Z. Removal of trace heavy metals from
a natural medicine material by supercritical CO2 chelating
extraction. Ind. Eng. Chem. Res. 2001, 40, 3659-3663.
(26) Wang, T.; Wang, H. Solubility of diethylammonium diethyldithio-
carbamate in supercritical carbon dioxide with ethanol as the co-
solvent. Chem. Eng. Process. 2003, 42, 61-65.
Figure 6. Parity plot of solubility data. 9, ethyl; 2, propyl; [,
butyl; b, bis(trifluoroethyl).
(with the exception of the Li PDDC) and fluorination. As
we have previously discussed, the Li PDDC is thought to
interact differently with carbon dioxide, possibly forming
a different orientation, than the other compounds explored
in this study.
Conclusions
The solubilities of these four short-chain dialkyldithio-
carbamates were high enough to be effective chelating
agents for the removal of copper in liquid and supercritical
carbon dioxide. A simple association model with temper-
ature and solvent density dependence accurately captured
the solubility data and can be used for the design of a
carbon dioxide based CMP process. Solubilities increased
with increasing density and temperature.
(27) Zhao, Y.; Perez-Segarra, W.; Shi, Q.; Wei, A. Dithiocarbamate
assembly on gold. J. Am. Chem. Soc. 2005, 127, 7328-7329.
(28) Stassi, A.; Bettini, R., Gazzaniga, A.; Giordano, F.; Schiraldi, A.
Assessment of solubility of ketoprofen and vanillic acid in
supercritical CO2 under dynamic conditions. J. Chem. Eng. Data
2000, 45, 161-165.
Acknowledgment
The authors appreciate the early work of Joseph Gribbin
of Villanova University on the solubility apparatus.
(29) Weinstein, R. D.; Muske, K. R.; Moriarty, J.; Schmidt, E. The
solubility of benzocaine, lidocaine, and procaine in liquid and
supercritical carbon dioxide. J. Chem. Eng. Data 2004, 49, 547-
552.
(30) Weinstein, R. D.; Gribbin, J. J.; Muske, K. R. The solubility and
salting behavior of several beta-adrenergic blocking agents in
liquid and supercritical carbon dioxide. J. Chem. Eng. Data 2005,
50, 226-229.
Literature Cited
(1) Rosenberg, R.; Edelstein, D. C.; Hu, C.-K.; Rodbell, K. P. Copper
metallization for high performance silicon technology. Annu. Rev.
Mater. Sci. 2000, 30, 229-262.
(2) Soukane, S.; Sen, S.; Cale, T. S. Feature superfilling in copper
electrochemical deposition. J. Electrochem. Chem. Soc. 2002, 149,
C74-C81.
(3) Steigerwald, J. M.; Murarka, S. P.; Gutmann, R. J. Chemical-
Mechanical Planarization of Microelectronic Materials; John
Wiley & Sons: New York, 1997.
(31) Lemmon, E. W.; Peskin, A. P.; McLinden, M. O.; Friend, D. G.
NIST Thermodynamic and Transport Properties of Pure Fluids,
NIST Pure FluidsVersion 5.0; U.S. Secretary of Commerce: 2000.
(32) Dandge, D. K.; Heller, J. P.; Wilson, K. V. Structure solubility
correlations: organic compounds and dense carbon dioxide binary
systems. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 162-166.
(33) Aranow, R. H.; Witten, L. The environmental influence on the
behavior of long chain molecules. J. Phys. Chem. 1960, 64, 1643-
1648.
(34) Kowalska, T. A thermodynamic interpretation of the differences
in solubility of substances belonging to the even and odd
homologous sub-series of n-dicarboxylic acids and phenyl-alkyl-
carbinols. Fette, Seifen, Anstrichm. 1984, 86, 239-243.
(35) Jennings, D. W.; Weispfenning, K. Experimental solubility data
of various n-alkane waxes: effects of alkane chain length, alkane
odd versus even carbon number structures, and solvent chemistry
on solubility. Fluid Phase Equilib. 2005, 227, 27-35.
(36) Li, Y.; Li, P.; Wang, J.; Wang, Y.; Yan, H.; Thomas, R. K. Odd/
even effect in the chain length on the enthalpy of micellization of
gemini surfactants in aqueous solution. Langmuir 2005, 21,
6703-6706.
(4) Murarka, S. P.; Steigerwald, J.; Gutmann, R. J. Inlaid copper
multilevel interconnections using planarization by chemical-
mechanical polishing. MRS Bull. 1993, 18, 46-51.
(5) Shannon, V.; Smith, D. C. Copper interconnects for high-volume
manufacturing. Semicond. Int. 2001, 24, 93-104.
(6) Braun, A. E. CMP becomes gentler more efficient. Semicond. Int.
2001, 13, 51-56.
(7) Braun, A. E. Etch confronts new material demands. Semicond.
Int. 2001, 2, 89.
(8) Plummer, J. D.; Griffin, P. B. Material and process limits in silicon
VLSI technology. Proc. IEEE 2001, 89, 240-258.
(9) Reid, J. Copper electrodeposition: principles and recent progress,
Jpn. J. Appl. Phys. 2001, 40, 2650-2657.
(10) Williams, E. D.; Ayers, R. U.; Heller, M. The 1.7 kilogram
microchip: energy and material use in production of semiconduc-
tor devices. Environ. Sci. Technol. 2002, 36, 5504-5510.
(11) Visintin, P. M.; Bessel, C. A.; Schauer, C. K.; DeSimone, J. M.
Studies on the mechanism of copper and zinc metal oxidation and
chelation in supercritical CO2 for a “dry” chemical mechanical
planarization process. Inorg. Chem. 2005, 44, 316-324.
(12) Bessel, C. A.; Denison, G. A.; DeSimone, J. A.; DeYoung,J.; Gross,
S.; Schauer, C. K.; Visintin, P. M. Etchant solutions for the
removal of Cu(0) in a supercritical CO2-based “dry” chemical
mechanical planarization process for device fabrication. J. Am.
Chem. Soc. 2003, 125, 4980.
(37) McClain, J. B.; Betts, D. E.; Canelas, D. A.; Samulski, E. T.;
DeSimone, J. M.; Londono, J. D.; Cochran, H. D.; Wignall, G. D.;
ChilluraMartino, D.; Triolo, R. Design of nonionic surfactants for
supercritical carbon dioxide. Science 1996, 274, 2049-2052.
(38) Johnston, K. P.; Harrison, K. L.; Clarke, M. J.; Howdle, S. M.;
Heitz, M. P.; Bright, F. V.; Carlier, C.; Randolph, T. W. Water-