Paper
Organic & Biomolecular Chemistry
7435; (d) A. Kulkarni, P. Quang and B. Török, Synthesis,
2009, 4010–4014.
9 (a) J. Liu, T. He and L. Wang, Tetrahedron, 2011, 67, 3420–
3426; (b) M. Shiri, M. A. Zolfigol and R. Ayazi-Nasrabadi,
Tetrahedron, 2010, 51, 264–268; (c) J. Xu, J. Xia and Y. Lan,
Synth. Commun., 2005, 35, 2347–2353; (d) S. Saito,
79, 4477–4483; (f) S. Adachi, M. Onozuka, Y. Yoshida,
M. Ide, Y. Saikawa and M. Nakata, Org. Lett., 2014, 16, 358–
361; (g) E. K. Raja, S. O. N. Lill and D. A. Klumpp, Chem.
Commun., 2012, 48, 8141–8143; (h) H. Kurouchi,
K. Kawamoto, H. Sugimoto, S. Nakamura, Y. Otani and
T. Ohwada, J. Org. Chem., 2012, 77, 9313–9328.
T. Ohwada and K. Shudo, J. Am. Chem. Soc., 1995, 117, 13 (a) A. Sumita, H. Kurouchi, Y. Otani and T. Ohwada, Chem.
11081–11084; (e) G. A. Olah, G. Rasul, C. York and
G. K. S. Prakash, J. Am. Chem. Soc., 1995, 117, 1121–11214;
(f) P. Thirupathi and S. S. Kim, J. Org. Chem., 2009, 74,
– Asian J., 2014, 9, 2995–3004; (b) H. Kurouchi, A. Sumita,
Y. Otani and T. Ohwada, Chem. – Eur. J., 2014, 20, 8682–
8690.
7755–7761; (g) C. Huo, C. Sun, C. Wang, X. Jia and 14 In recent years, several reports have shown that isocyanates
W. Chang, ACS Sustainable Chem. Eng., 2013, 1, 549–553;
(h) C. Huo, C. Wang, C. Sun, X. Jia, X. Wang, W. Chang and
M. Wu, Adv. Synth. Catal., 2013, 355, 1911–1916.
are useful chemical species to form aromatic amides.
(a) G. Schäfer, C. Matthey and J. W. Bode, Angew. Chem.,
Int. Ed., 2012, 57, 9173–9175; (b) G. Schäfer and J. W. Bode,
Org. Lett., 2014, 16, 1526–1529 and ref. 12h.
10 (a) H. Ishida, H. Nukaya, K. Tsuji, H. Zenda and T. Kosuge,
Chem. Pharm. Bull., 1992, 40, 308–313; (b) H. Naeimi and 15 P. Gund, J. Chem. Educ., 1972, 49, 10–103.
S. S. Brojerdi, Polycyclic Aromat. Compd., 2014, 34, 504–517; 16 J. P. Hwang, G. K. S. Prakash and G. A. Olah, Tetrahedron,
(c) A. P. Krapcho, Z. Getahun and K. J. Avery Jr., Synth.
2000, 56, 7199–7203.
Commun., 1990, 24, 2139–2146; (d) G. A. Guerrero-Vásquez, 17 M. Kozelj and A. Petric, Synlett, 2007, 1699–1702.
C. K. Z. Andrade, J. M. G. Molinillo and F. A. Macías, 18 A. Kethe, A. F. Tracy and D. A. Klumpp, Org. Biomol. Chem.,
Eur. J. Org. Chem., 2013, 6175–6180; (e) R. Huot and
P. Brassard, Can. J. Chem., 1974, 52, 838–842.
2011, 9, 4545.
19 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaus-
sian 09, Gaussian, Inc., Wallingford, CT, 2009.
11 (a) L. Bianchi, M. Maccagno, M. Pani, G. Petrillo,
C. Scapolla and C. Tavani, Tetrahedron, 2015, 71, 7421–
7435; (b) G. Gangadhararao, A. Uruvakilli and
K. C. K. Swamy, Org. Lett., 2014, 16, 6060–6063; (c) L. Hao,
Y. Pan, T. Wang, M. Lin, L. Chen and Z. Zhan, Adv. Synth.
Catal., 2010, 352, 3215–3222; (d) S. Sarkar, K. Bera and
U. Jana, Tetrahedron Lett., 2014, 55, 6188–6192; (e) X. Xie,
X. Du, Y. Chen and Y. Liu, J. Org. Chem., 2011, 76, 9175–
9181; (f) A. C. Silvanus, S. J. Heffernan, D. J. Liptrot,
G. Kociok-Köhn, B. I. Andrews and D. R. Carbery, Org. Lett.,
2009, 11, 1175–1178; (g) H. Li, R. Guillot and V. Gandon,
J. Org. Chem., 2010, 75, 8435–8449; (h) K. Fuchibe,
H. Jyono, M. Fujiwara, T. Kudo, M. Yokota and J. Ichikawa,
Chem. – Eur. J., 2011, 17, 12175–12185.
12 Up to the present, masked (blocked) electrophiles have
mainly been limited to masked (blocked) isocyanates. For a
review of masked (blocked) isocyanates, see: E. Delebecq,
J. Pascault, B. Boutevin and F. Ganachaud, Chem. Rev., 20 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
2013, 113, 80–118. Recent studies on application masked 21 K. Fukui, Acc. Chem. Res., 1981, 14, 363–368.
isocyanates to synthetic organic chemistry: (a) M. Hutchby, 22 (a) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102,
C. E. Houlden, J. G. Ford, S. N. G. Tyler, M. R. Gagné,
G. C. Lloyd-Jones and K. I. Booker-Milburn, Angew. Chem.,
1995–2001; (b) M. Cossi, N. Rega, G. Scalmani and
V. Barone, J. Comput. Chem., 2003, 24, 669–681.
Int. Ed., 2009, 48, 8721–8724; (b) C. Clavette, J. V. Rocan 23 A. L. Lira, M. Zolotukhin, L. Fomina and S. Fomine, J. Phys.
and A. M. Beauchemin, Angew. Chem., Int. Ed., 2013, 52, Chem. A, 2007, 111, 13606–13610.
12705–12708; (c) H. Ying, Y. Zhang and J. Cheng, Nat. 24 R. Corkum and J. Milne, Can. J. Chem., 1978, 56, 1832–
Commun., 2014, 5, 3218; (d) Y. Wei, J. Liu, S. Lin, H. Ding, 1835.
F. Liang and B. Zhao, Org. Lett., 2010, 12, 4220–4223; 25 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120,
(e) C. Spyropoulos and C. G. Kokotos, J. Org. Chem., 2014,
215–241.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015