6636
P. Magnus, M. R. Fielding / Tetrahedron Letters 42 (2001) 6633–6636
Table 1. (Continued)
Substrate
Product(s)
Yield (ratio)
68%
22
CHO
CH2OH
23
92%
CH2OH
CHO
The yields refer to isolated products unless otherwise stated. All reactions were run under the same conditions except entry 15, where a 1:1 ratio
of 2-propanol:1,2-dichloroethane was employed to dissolve the substrate.
Semmelhack has also reported that Et3SiH/Ru(II)/
AgOCOCF3 reduces 4-tert-butylcyclohexanone to give
the equatorial alcohol as the major stereoisomer (95:5).6
Lett. 2001, 42, 4127; (c) Inoki, S.; Kato, K.; Isayama, S.;
Mukaiyama, T. Chem. Lett. 1990, 1869.
2. Magnus, P.; Waring, M. J.; Scott, D. A. Tetrahedron
Lett. 2000, 41, 9731.
Hindered ketones (entries 6, 7, 8, 9, 14, 15 and 16) are
less reactive, and where stereoselectivity issues arise the
major alcohol results from reduction from the least
encumbered face of the carbonyl group. Medium ring
ketones (entries 10 and 11) are also less reactive. Car-
bonyl groups conjugated with an aromatic ring are only
slowly reduced, and aromatic aldehydes (entries 20, 21
and 22) were surprisingly (relative to entry 23) slow to
reduce.
3. (a) James, B. R.; Ng, F. T. T.; Rempel, G. L. Can. J.
Chem. 1969, 47, 4521; (b) Osborn, J. A.; Powell, A. R.;
Wilkinson, G. Chem. Commun. 1966, 461; (c) Roberts, H.
L.; Symes, W. R. J. Chem. Soc. (A) 1968, 1450; (d)
Lawson, D. N.; Mays, M. J.; Wilkinson, G. J. Chem.
Soc. (A) 1966, 52. All of these papers describe the forma-
tion of RhOOH from RhH in the presence of dioxygen.
4. Greeves, N. In Comprehensive Organic Synthesis; Trost,
B. M.; Fleming, I., Eds.; Pergamon Press, 1991; Vol. 8.
5. (a) Che´rest, M.; Felkin Tetrahedron Lett. 1968, 2205; (b)
Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1987, 109,
908; (c) Mukherjee, D.; Wu, Y.-D.; Fronczek, F. R.;
Houk, K. N. J. Am. Chem. Soc. 1988, 110, 3328; (d)
Huet, J.; Maroni-Barnaud, Y.; Anh, N. T.; Seyden-
Penne, J. Tetrahedron Lett. 1976, 159.
Representative procedure: Phenylsilane (348 mL, 0.4
equiv.) was added dropwise to a stirred solution of the
substrate (2 mmol) and Mn(dpm)3 (36 mg, 3 mol%) in
2-propanol (2 mL)/1,2-dichloroethane (100 mL) under
an oxygen atmosphere (1 Atm) at 23°C. On completion
of the reaction (TLC), the mixture was evaporated to
dryness and the residue purified by chromatography
over silica gel eluting with EtOAc/pentane mixtures to
give the corresponding alcohol.
6. Semmelhack, M. F.; Misra, R. N. J. Org. Chem. 1982,
47, 2469.
7. Kartha, G.; Go, K. T.; Bose, A. K.; Tibbetts, M. S. J.
Chem. Soc., Perkin Trans. 2 1976, 717.
8. Kobayashi, Y.; Takahisa, E.; Nakano, M.; Watatani, K.
Tetrahedron 1997, 53, 1627.
9. Stoffers, J. B.; Tan, C. T.; Teo, K. C. Can. J. Chem. 1976,
54, 1211.
In summary, the above reduction procedure provides a
mild method that does not need exclusion of air or
moisture.
10. Coxon, J. M.; Hydes, G. S.; Steel, P. J. J. Chem. Soc.,
Perkin Trans. 2 1984, 1351.
11. Loomes, D. J.; Robinson, M. J. T. Tetrahedron 1977, 33,
1149.
Acknowledgements
12. Malinowski, E. R.; Manhas, M. S.; Mu¨ller, G. H.; Bose,
A. K. Tetrahedron Lett. 1963, 1161.
13. McDermott, I. R.; Robinson, C. H.; Deklerk, D. P.
Steroids 1978, 31, 511.
14. Kametani, T.; Matsumoto, H.; Nemoto, H.; Fukumoto,
K. J. Am. Chem. Soc. 1978, 100, 6218.
The National Institutes of Health (GM 32718), The
Robert A. Welch Foundation, Merck Research Labo-
ratories and Novartis are thanked for their support of
this research.
15. (a) Khare, A.; Moss, G. P.; Weedon, B. C. L. J. Chem.
Soc., Perkin Trans. 2 1988, 1389; (b) Tanaka, A.;
Yamamoto, H.; Oritani, T. Tetrahedron: Asymmetry
1995, 6, 1273; (c) Lamb, N.; Abrams, S. R. Can. J. Chem.
1990, 68, 1151.
References
1. (a) Magnus, P.; Payne, A. H.; Waring, M. J.; Scott, D.
A.; Lynch, V. Tetrahedron Lett. 2000, 41, 9725; (b)
Magnus, P.; Scott, D. A.; Fielding, M. R. Tetrahedron