Please do not adjust margins
Dalton Transactions
Page 6 of 8
DOI: 10.1039/C8DT00254A
Journal Name
ARTICLE
2ꢀ
adsorption of CrO42ꢀ/ Cr2O7 in the UVꢀvis region, reduce
energy of transmission process, and finally lead to
luminescence quenching.
J. Whiteoak, N. Kielland, V. Laserna, E. C. EscuderoꢀAdán, E. Martin
and A. W. Kleij, J. Am. Chem. Soc., 2013, 135, 1228; (g) Y. Wang, N. ꢀY.
Huang, J. ꢀQ. Shen, P. ꢀQ. Liao, X. ꢀM. Chen and J. ꢀP. Zhang, J. Am.
Chem. Soc., 2018, 140, 38.
6 (a) W. S. Liu, T. Q. Jiao, Y. Z. Li, Q. Z. Liu, M. Y. Tan, H. Wang and L.
F. Wang, J. Am. Chem. Soc., 2004, 126, 2280; (b) Y. J. Cui, B. L. Chen
and G. D. Qian, Coord. Chem. Rev., 2014, 273-274, 76; (c) B. Liu, W. P.
Wu, L. Hou and Y. Y. Wang, Chem. Commun., 2014, 50, 8731; (d) H. R.
Fu, Z. X. Xu and J. Zhang, Chem. Mater., 2015, 27, 205; (e) S. Dang, E.
Ma, Z. M. Sun and H. J. Zhang, J. Mater. Chem., 2012, 22, 16920.
7 (a) H. Xu, H. C. Hu, C. S. Cao and B. Zhao, Inorg. Chem., 2015, 54, 4585;
(b) H. Xu, C. S. Cao and B. Zhao, Chem. Commun., 2015, 51, 10280; (c)
Z. Chen, Y. W. Sun, L. L. Zhang, D. Sun, F. L. Liu, Q. G. Meng, R. M.
Wang and D. F. Sun, Chem. Commun., 2013, 49, 11557; (d) J. N. Hao
and B. Yan, J. Mater. Chem. C, 2014, 2, 6758.
8 (a) M. Bottrill, L. Kwok and N. J. Long, Chem. Soc. Rev., 2006, 35, 557;
(b) K. A. White, D. A. Chengelis, K. A. Gogick, J. Stehman, N. L. Rosi
and S. Petoud, J. Am. Chem. Soc., 2009, 131, 18069; (c) C. Marchal, Y.
Filinchuk, X. Y. Chen, D. Imbert and M. Mazzanti, Chem. -Eur. J., 2009,
15, 5273; (d) B. L. Chen, Y. Yang, F. Zapata, G. D. Qian, Y. S. Luo, J. H.
Zhang and E. B. Lobkovsky, Inorg. Chem., 2006, 45, 8882; (e) C. L.
Xiao, M. A. Silver and S. A. Wang, Dalton Trans., 2017, 46, 16381.
9 (a) S. Chu, Science 2009, 325, 1599; (b) J. ꢀR. Li, Y. ꢀG. Ma, M. C.
McCarthy, J. Sculley, J. ꢀM. Yu, H. ꢀK. Jeong, P. B. Balbuena and H. ꢀC.
Zhou, Coord. Chem. Rev. 2011, 255, 1791.
Conclusions
In summary, a multifunctional metalꢀorganic framework 1 with
high solventꢀstability and pHꢀstability was prepared. Compound 1
can serve as an efficient, recyclable and environmentally friendly
catalyst for the conversion of CO2 with five aziridines or epoxides
containing different substituent groups. Importantly, catalyst 1 can
be reused at least ten times without any obvious loss in catalytic
activity, and PXRD of compound 1 after recyclings keep well
consistent with the original one. To the best of our knowledge, this
is the first multifunctional MOFsꢀbased catalyst serving as the
conversion of CO2 with aziridines or eopoxides. Furthermore, the
material can also act as a recyclable luminescent probe for
chromium(VI) anion species among twenty anions.
Conflicts of interest
There are no conflicts to declare.
10 (a) H. ꢀF. Zhou, B. Liu, L. Hou, W. ꢀY. Zhang and Y. ꢀY. Wang, Chem.
Commun., 2018, 54, 456; (b) X. ꢀY. Li, Y. ꢀZ. Li, Y. Yang, L. Hou, Y. ꢀY.
Wang and Z. Zhu, Chem. Commun., 2017, 53, 12970; (c) J. Liang, Y. ꢀB.
Huang and R. Cao, Coord. Chem. Rev., doi.org/10.1016/j.ccr.2017.
11.013; (d) J. Dong, P. Cui, P. ꢀF. Shi, P. Cheng and B. Zhao, J. Am.
Chem. Soc., 2015, 137, 15988; (e) Z. Zhou, C. He, J. ꢀH. Xiu, L. Yang
and C. ꢀY. Duan, J. Am. Chem. Soc., 2015, 137, 15066; (f) P. ꢀZ. Li, X. ꢀJ.
Wang, J. Liu, J. S. Lim, R. ꢀQ. Zou and Y. ꢀL. Zhao, J. Am. Chem. Soc.,
2016, 138, 2142; (g) M. H. Beyzavi, R. C. Klet, S. Tussupbayev, J.
Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp and O.
K. Farha, J. Am. Chem. Soc., 2014, 136, 15861; (h) B. A. Vara, T. J.
Struble, W. Wang, M. C. Dobish and J. N. Johnston, J. Am. Chem. Soc.,
2015, 137, 7302.
Acknowledgements
This work was supported by NSFC (21625103, 21571107, and
21421001), SFC of Tianjin (15JCZDJC37700) and 111
Project (B12015).
References
1 (a) J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D.
Srivastava, Int. J. Greenhouse Gas Control, 2008, 2, 9; (b) M. Pervaiz
and M. M. Sain, Resour., Conserv. Recycl., 2003, 39, 325.
2 (a) B. Li, H. M. Wen, Y. Cui, G. Qian and B. Chen, Prog. Polym. Sci.,
2015, 48, 40; (b) Y. B. He, H. Furukawa, C. D. Wu, M. O’Keeffe, R.
Krishna and B. L. Chen, Chem. Commun., 2013, 49, 6773; (c) X. D. Guo,
G. S. Zhu, Z. Y. Li, F. X. Sun, Z. H. Yang and S. L. Qiu, Chem.
Commun., 2006, 3172; (d) H. L. Jiang, N. Tsumori and Q. Xu, Inorg.
Chem., 2010, 49, 10001; (e) X. L. Zhang, Y. ꢀZ. Zhang, D. ꢀS. Zhang, B.
Y. Zhuang and J. ꢀR. Li, Dalton Trans., 2015, 44, 15697.
3 (a) Z. C. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815; (b)
J. Rocha, L. D. Carlos, F. A. A. Paz and D. Ananias, Chem. Soc. Rev.,
2011, 40, 926; (c) Y. Liu, M. Pan, Q. Y. Yang, L. Fu, K. Li, S. C. Wei
and C. Y. Su, Chem. Mater., 2012, 24, 1954; (d) Y. J. Cui, R. J. Song, J.
C. Yu, M. Liu, Z. Q. Wang, C. D. Wu, Y. Yang, Z. Y. Wang, B. L.
Chen and G. D. Qian, Adv. Mater., 2015, 27, 1420; (e) X. C. Gao, G. F. Ji,
R. X. Cui, J. J. Liu and Z. L. Liu, Dalton Trans., 2017, 46, 13686.
4 (a) D. F. Weng; Z. M. Wang and S. Gao, Chem. Soc. Rev., 2011, 40, 3157;
(b) J. D. Rinehart and J. R. Long, Chem. Sci., 2011, 2, 2078; (c) L. Sorace,
C. Benelli and D. Gatteschi, Chem. Soc. Rev., 2011, 40, 3092; (d) Y. C.
Chen, J. L. Liu, L. Ungur, J. Liu, Q. W. Li, L. F. Wang, Z. P. Ni, L. F.
Chibotaru, X. M. Chen and M. L. Tong, J. Am. Chem. Soc., 2016, 138,
2829; (e) P. Zhang, L. Zhang, C. Wang, S. F. Xue, S. Y. Lin and J. K.
Tang, J. Am. Chem. Soc., 2014, 136, 4484.
5 (a) V.Guillerm, L. J. Weselinski, Y. Belmabkhout, A. J. Cairns, V. D'Elia,
L. Wojtas, K. Adil and M. Eddaoudi, Nat. Chem., 2014, 6, 673; (b) J. W.
Han and C. L. Hill, J. Am. Chem. Soc., 2007, 129, 15094; (c) F. Gándara,
E. G. Puebla, M. Iglesias, D. M. Proserpio, N. Snejko and M. Á. Monge,
Chem. Mater., 2009, 21, 655; (d) J. Qin, P. Wang, Q. Li, Y. Zhang, D.
Yuan and Y. Yao, Chem. Commun., 2014, 50, 10952; (e) A. Decortes, A.
M. Castilla and A. W. Kleij, Angew. Chem. Int. Ed., 2010, 49, 9822; (f) C.
11 F. Manjolinho, M. Arndt, K. Gooßen and L. J. Gooßen, ACS Catal.,
2012, 2, 2014.
12 (a) Y. Himeda, N. OnozawaꢀKomatsuzaki, H. Sugihara and K. Kasuga, J.
Am. Chem. Soc., 2005, 127, 13118; (b) R. Tanaka, M. Yamashita and K.
Nozaki, J. Am. Chem. Soc., 2009, 131, 14168; (c) Z. ꢀF. Zhang, Y. Xie,
W. ꢀJ. Li, S. ꢀQ. Hu, J. ꢀL. Song, T. Jiang and B. X. Han, Angew. Chem.
Int. Ed. 2008, 47, 1127; (d) Y. ꢀH. Fu, D. ꢀR. Sun, Y. ꢀJ. Chen, R. ꢀK.
Huang, Z. ꢀX. Ding, X. ꢀZ. Fu and Z. ꢀH. Li, Angew. Chem. Int. Ed., 2012,
51, 3364.
13 Y. Du, Y. Wu, A. H. Liu and L. N. He, J. Org. Chem., 2008, 73, 4709.
14 (a) M. ꢀY. He, Y. ꢀH. Sun and B. ꢀX. Han, Angew. Chem. Int. Ed., 2013,
52, 9620; (b) J. ꢀC. Choi, N. ꢀL. He, H. Yasuda and T. Sakakura, Green
Chem., 2002, 4, 230; (c) P. Tundo, M. Selva, Acc. Chem. Res., 2002, 35,
706; (d) A. ꢀH. Liu, Y. ꢀN. Li and L. ꢀN. He, Pure Appl. Chem., 2012, 84,
581; (e) M. Honda, M. Tamura, Y. Nakagawa and K. Tomishige, Catal.
Sci. Technol., 2014, 4, 2830.
15 (a) D. J. Darensbourg, A. I. Moncada, W. Choi and J. H. Reibenspies, J.
Am. Chem. Soc., 2008, 130, 6523; (b) S. Fukuoka, M. Kawamura, K.
Komiya, M. Tojo, H. Hachiya, K. Hasegawa, M. Aminaka, H. Okamoto,
I. Fukawa and S. Konno, Green Chem., 2003, 5, 497; (c) R. N. Salvatore,
S. Il Shin, A. S. Nagle and K. W. Jung, J. Org. Chem., 2001, 66, 1035.
16 (a) M. R. Barbachyn and C. W. Ford, Angew. Chem. Int. Ed., 2003, 42,
2010; (b) T. A. Makhtar and G. D. Wright, Chem. Rev., 2005, 105, 529;
(c) L. Aurelio, R. T. C. Brownlee and A. B. Hughus, Chem. Rev., 2004,
104, 5823.
17 (a) P. Tascedda and E. Duñach, Chem. Commun., 2000, 449; (b) A. Sudo,
Y. Morioka, E. Koizumi, F. Sanda and T. Endo, Tetrahedron Lett., 2003,
This journal is © The Royal Society of Chemistry 20xx
Dalton Trans., 2018, 00, 1-3 | 6
Please do not adjust margins