Journal of the American Chemical Society
Page 4 of 10
Grosser, S. T.; Halsey, H. M.; Hughes, G. J.; Jo, J.; Joyce, L. A.; Kolev, J. N.;
hydrogen bonding networks. In favorable cases, as shown
in the current study, large changes in substrate preference
can even be realized by single active site mutations. The en-
suing control over multiple stereocenters and regioselec-
tive formation of normally disfavored linear aldol adducts
from linear ketones adds to the repertoire of tools available
to synthetic chemists looking for efficient ways to control C-
C bond formation. Although more extensive engineering
may be needed to adapt RA95 aldolases for other sub-
strates, particularly polar ketones, ultrahigh-throughput
screening methods may expedite the search for useful vari-
ants.18,41–43
Liang, J.; Maloney, K. M.; Mann, B. F.; Marshall, N. M.; McLaughlin, M.;
Moore, J. C.; Murphy, G. S.; Nawrat, C. C.; Nazor, J.; Novick, S.; Patel, N. R.;
Rodriguez-Granillo, A.; Robaire, S. A.; Sherer, E. C.; Truppo, M. D.;
Whittaker, A. M.; Verma, D.; Xiao, L.; Xu, Y.; Yang, H. Design of an in Vitro
Biocatalytic Cascade for the Manufacture of Islatravir. Science 2019,
366, 1255–1259.
1
2
3
4
5
6
7
8
(5)
Kiss, G.; Çelebi-Ölçüm, N.; Moretti, R.; Baker, D.; Houk, K. N.
Computational Enzyme Design. Angew. Chemie Int. Ed. 2013, 52, 5700–
5725.
(6)
Computational Design. Curr. Opin. Chem. Biol. 2013, 17, 221–228.
(7) Hilvert, D. Design of Protein Catalysts. Annu. Rev. Biochem.
2013, 82, 447–470.
Kries, H.; Blomberg, R.; Hilvert, D. De Novo Enzymes by
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8)
Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.;
Moore, J. C.; Robins, K. Engineering the Third Wave of Biocatalysis.
Nature 2012, 485, 185–194.
(9)
Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.;
Röthlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka, F.;
Barbas, C. F.; Hilvert, D.; Houk, K. N.; Stoddard, B. L.; Baker, D. De Novo
Computational Design of Retro-Aldol Enzymes. Science 2008, 319,
1387–1391.
(10) Althoff, E. A.; Wang, L.; Jiang, L.; Giger, L.; Lassila, J. K.; Wang,
Z.; Smith, M.; Hari, S.; Kast, P.; Herschlag, D.; Hilvert, D.; Baker, D. Robust
Design and Optimization of Retroaldol Enzymes. Protein Sci. 2012, 21,
717–726.
(11) Bjelic, S.; Kipnis, Y.; Wang, L.; Pianowski, Z.; Vorobiev, S.; Su,
M.; Seetharaman, J.; Xiao, R.; Kornhaber, G.; Hunt, J. F.; Tong, L.; Hilvert,
D.; Baker, D. Exploration of Alternate Catalytic Mechanisms and
Optimization Strategies for Retroaldolase Design. J. Mol. Biol. 2014,
426, 256–271.
(12) Wagner, J.; Lerner, R. A.; Barbas, C. F. Efficient Aldolase
Catalytic Antibodies That Use the Enamine Mechanism of Natural
Enzymes. Science (80-. ). 1995, 270, 1797.
(13) Garrabou, X.; Beck, T.; Hilvert, D. A Promiscuous De Novo
Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base
Intermediates. Angew. Chemie Int. Ed. 2015, 54, 5609–5612.
(14) Garrabou, X.; Macdonald, D. S.; Wicky, B. I. M.; Hilvert, D.
Stereodivergent Evolution of Artificial Enzymes for the Michael
Reaction. Angew. Chemie Int. Ed. 2018, 57, 5288–5291.
(15) Garrabou, X.; Verez, R.; Hilvert, D. Enantiocomplementary
Synthesis of γ-Nitroketones Using Designed and Evolved Carboligases.
J. Am. Chem. Soc. 2017, 139, 103–106.
(16) Garrabou, X.; Macdonald, D. S.; Hilvert, D. Chemoselective
Henry Condensations Catalyzed by Artificial Carboligases. Chem. - A
Eur. J. 2017, 23, 6001–6003.
(17) Giger, L.; Caner, S.; Obexer, R.; Kast, P.; Baker, D.; Ban, N.;
Hilvert, D. Evolution of a Designed Retro-Aldolase Leads to Complete
Active Site Remodeling. Nat. Chem. Biol. 2013, 9, 494–498.
(18) Obexer, R.; Godina, A.; Garrabou, X.; Mittl, P. R. E.; Baker, D.;
Griffiths, A. D.; Hilvert, D. Emergence of a Catalytic Tetrad during
Evolution of a Highly Active Artificial Aldolase. Nat. Chem. 2017, 9, 50–
56.
(19) Fotaras, S.; Kokotos, C. G.; Tsandi, E.; Kokotos, G.
Prolinamides Bearing Thiourea Groups as Catalysts for Asymmetric
Aldol Reactions. European J. Org. Chem. 2011, 1310–1317.
(20) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley,
S. V. Organocatalysis with Proline Derivatives: Improved Catalysts for
the Asymmetric Mannich, Nitro-Michael and Aldol Reactions. Org.
Biomol. Chem. 2005, 3, 84–96.
(21) List, B.; Barbas, C. F.; Lerner, R. A. Aldol Sensors for the Rapid
Generation of Tunable Fluorescence by Antibody Catalysis. Proc. Natl.
Acad. Sci. U. S. A. 1998, 95, 15351–15355.
(22) Zeymer, C.; Zschoche, R.; Hilvert, D. Optimization of Enzyme
Mechanism along the Evolutionary Trajectory of a Computationally
Designed (Retro-)Aldolase. J. Am. Chem. Soc. 2017, 139, 12541–12549.
(23) Dauphin, G.; Cramain, J. C.; Kergomard, A.; Renard, M. F.;
Veschambre, H. Microbiological Synthesis and Circular Dichroism of
Optically Active 2-Deuterio-Cycloalkanones. Tetrahedron Lett. 1980,
21, 4275–4278.
(24) Seki, A.; Ishiwata, F.; Takizawa, Y.; Asami, M. Crossed Aldol
Reaction Using Cross-Linked Polymer-Bound Lithium Dialkylamide.
Tetrahedron 2004, 60, 5001–5011.
The Supporting Information is available free of charge on
the ACS Publications website.
Complete experimental procedures, with sequence infor-
mation, additional kinetic data, crystallographic data, code
for running Rosetta modeling, as well as Figures S1-S33 and
Tables S1-S9 (PDF)
*hilvert@org.chem.ethz.ch
ORCID
Duncan S. Macdonald: 0000-0001-9467-6658
Xavier Garrabou: 0000-0003-3663-8420
Cindy Klaus: 0000-0001-5977-1158
Takahiro Mori: 0000-0002-2754-5858
Donald Hilvert: 0000-0002-3941-621X
Author Contributions
D.S.M. and X.G. contributed equally to this work.
The authors declare no competing financial interests.
The authors are grateful to the Swiss National Science Foun-
dation and the ETH Zurich for generous support of this
work. We also acknowledge Sabine Österle, Andreas Kaspar
and the students of OCPI class of 2019 for their contribu-
tions.
(1)
Aldolases as Biocatalysts. Curr. Opin. Chem. Biol. 2014, 19, 25–33.
(2) Hernández, K.; Szekrenyi, A.; Clapés, P. Nucleophile
Windle, C. L.; Müller, M.; Nelson, A.; Berry, A. Engineering
Promiscuity of Natural and Engineered Aldolases. ChemBioChem 2018,
19, 1353–1358.
(3)
Soler, A.; Gutiérrez, M. L.; Bujons, J.; Parella, T.; Minguillon,
C.; Joglar, J.; Clapés, P. Structure-Guided Engineering of D-Fructose-6-
Phosphate Aldolase for Improved Acceptor Tolerance in Biocatalytic
Aldol Additions. Adv. Synth. Catal. 2015, 357, 1787–1807.
(4)
Huffman, M. A.; Fryszkowska, A.; Alvizo, O.; Borra-Garske,
M.; Campos, K. R.; Canada, K. A.; Devine, P. N.; Duan, D.; Forstater, J. H.;
4
ACS Paragon Plus Environment