10.1002/anie.201706719
Angewandte Chemie International Edition
COMMUNICATION
propose a model (A, Figure 3) where alkene binding occurs with
the large borate group directed outside the cyclic framework of
the catalyst and with the more substituted alkene carbon
positioned away from the pseudoequatorial N-methyl group of
the ligand. With permethylated ligand L7, binding of the alkene
to the Ni complex is blocked, whereas with primary amino ligand
(L8), approach of the olefin to Ni can occur from above or below
This work was supported by the NIH (GM-118641). We thank
Dr. Bo Li (Boston College) for assistance with X-ray structures.
Keywords: Cross Coupling • Boron • Asymmetric Catalysis •
Nickel
the square plane leading to non-selective reaction.
The
stereoselectivity observed with ligands L9 and 10 is consistent
with this model as well. Notably, the high level of selectivity
observed with L11, a compound identical to L6 but with only one
backbone substituent, reveals a likely function of the phenyl
group: rather than gear the orientation of the adjacent N-methyl
group, it more likely establishes the ring conformation such that
both N-methyl groups in L11 occupy pseudoequatorial positions
and a selective reaction results. This latter observation holds
the practical implication that a broad array of readily available α-
amino acid-derived ligands may prove effective in this reaction
and thereby serve as a ligand platform to improve selectivity with
problem substrates.
[1]
[2]
[3]
Review: C. Sandford, V. K. Aggarwal, Chem. Commun. 2017, 53, 5481.
H. C. Brown, J. L. Hubbard, K. Smith, Synthesis, 1969, 701.
(a) H. C. Brown, M. M. Rogic, M. W. Rathke, G. W. Kabalka, J. Am.
Chem. Soc. 1968, 90, 818. (b) H. C. Brown, M. M. Rogic, J. Am. Chem.
Soc. 1969, 91, 2146. (c) H. C. Brown, H. Nambu, M. M. Rogic, J. Am.
Chem. Soc. 1969, 91, 6854.
[4]
[5]
M. J. O'Donnell, J. T. Cooper, M. M. Mader, J. Am. Chem. Soc. 2003,
125, 2370.
(a) J. L. Stymiest, G. Dutheuil, A. Mahmood, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2007, 46, 7491. (b) J. L. Stymiest, V. Bagutski, R. M.
French, V. K. Aggarwal, Nature, 2008, 456, 778. (c) M. Binanzer, G. Y.
Fang, V. K. Aggarwal, Angew. Chem., Int. Ed. 2010, 49, 4264.
(a) L. Zhang, G. J. Lovinger, E. K Edelstein, A. A. Szymaniak, M. P.
Chierchia, J. P. Morken, Science. 2016, 351, 70. (b) G. J. Lovinger, M.
D. Aparece, J. P. Morken, J. Am. Chem. Soc. 2017, 139, 3153. (c) E. K.
Edelstein, S. Namirembe, J. P. Morken, J. Am. Chem. Soc. 2017, 139,
5027.
[6]
[7]
a:
For related processes: (a) E. Fillion, R. J. Carson, V. E. Trépanier, J. M.
Goll, A. A. Remorova, J. Am. Chem. Soc. 2004, 126, 15354. (b) E.
Fillion, V. E. Trépanier, J. J. Heikkinen, A. A. Remorova, R. J. Carson, J.
M. Goll, A. Seed, Organometallics 2009, 28, 3518. (c) N. Ishida, Y.
Shimamoto, M. Murakami, Org. Lett. 2009, 11, 5434. (d) N. Ishida, T.
Shinmoto, S. Sawano, T. Miura, M. Murakami, Bull. Chem. Soc. Jpn.
2010, 83, 1380. (e) N. Ishida, M. Narumi, M. Murakami, Org. Lett. 2008,
10, 1279. (f) N. Ishida, Y. Shimamoto, M. Murakami, Org. Lett. 2010, 12,
3179. (g) N. Ishida, W. Ikemoto, M. Narumi, M. Murakami, Org. Lett.
2011, 13, 3008. (h) M. Kischkewitz, K. Okamoto, C. Mück-Lichtenfeld,
A. Studer, Science, 2017, 355, 936. (i) M. Silvi, C. Sandford, V. K.
Aggarwal, J. Am. Chem. Soc. 2017, 139, 5736. (j) S. Panda, J. M.
Ready, J. Am. Chem. Soc. 2017, 139, 6038.
b:
Ph
N
Ph
N
Ph
Ph
Ph
Ph
Me
Me
H
N
N
Me
Me
N
N
Me
Me Me
H
Me
H
Me
L7: <5%
L8: 54%
L9 : 52%
[8]
[9]
For recent examples involving electrophile promoted metallate shifts of
alkenyl boronate complexes, see: ref. 7j, (a) R. J. Armstrong, C.
Sandford, C. García-Ruiz, V. K. Aggarwal, Chem. Commun. 2017, 53,
4922. (b) R. J. Armstrong, C. García-Ruiz, E. L. Myers, V. K. Aggarwal,
Angew. Chem., Int. Ed. 2017, 56, 786.
43:57 e.r.
96:4 e.r.
X
X
H
H
Ph
Ph
Ph
Ph
Ph
N
Ph
N
Me
Me
Me
N
N
Ni
Ni
Me
Ar
Ar
Me
N
H
N
Me
Me
N
H
N Me
H
H
Me
H
(a) G. P. Boldrini, D. Savoia, E. Tagliavini, C. Trombini, A. U. Ronchi, J.
Organomet. Chem. 1986, 301, C62. (b) S. A. Lebedev, V. S. Lopatina,
E. S. Petrov, I. P. Beletskaya, J. Organomet. Chem. 1988, 344, 253. (c)
A. A. Kelkar, T. Hanaoka, Y. Kubota, Y. Sugi, Catal. Lett. 1994, 29, 69.
(d) S. Iyer, C. Ramesh, A. Ramani, Tetrahedron Lett. 1997, 38, 8533.
(e) B. M. Bhanage, F. Zhao, M. Shirai, M. Arai, Catal. Lett. 1998, 54,
195. (f) K. InamotoJ. I. , Kuroda, K. Hiroya, Y. Noda, M. Watanabe, T.
Sakamoto, Organometallics 2006, 25, 3095. (g) S. Ma, H. Wang, K.
Gao, F. Zhao, J. Mol. Catal. A 2006, 248, 17. (h) Z. X. Wang, Z. Y. Chai,
Eur. J. Inorg. Chem. 2007, 4492. (i) P. S. Lin, M. Jeganmohan, C. H.
Cheng, Chem. Asian J. 2007, 2, 1409. (j) R. Matsubara, A. C. Gutierrez,
T. F. Jamison, J. Am. Chem. Soc., 2011, 133, 19020. (k) T. M. Gøgsig,
J. Kleimark, S. O. Nilsson Lill, S. Korsager, A. T. Lindhardt, P. O.
Norrby, T. Skrydstrup, J. Am. Chem. Soc. 2011, 134, 443. (l) A. R. Ehle,
Q. Zhou, M. P. Watson, Org. Lett. 2012, 14, 1202. (m) E. A. Standley, T.
F. Jamison, J. Am. Chem. Soc. 2013, 135, 1585. (n) S. Z. Tasker, A. C.
Gutierrez, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 1858. (o) J.-
N. Desrosiers, L. Hie, S. Biswas, O. V. Zatolochnaya, S. Rodriguez, H.
Lee, N. Grinberg, N. Haddad, N. K. Yee, N. K. Garg, C. H. Senanayake,
Angew. Chem. Int. Ed. 2016, 55, 11921.
H
H
H
Li
L
H
H
L
L10: 69%
L11: 39%
L
L
H
B
B
94:6 e.r.
90:10 e.r.
RM
Li
RM
A
favored
disfavored
Figure 3. a. X-ray structure of (L6)2NiBr2. b. Effect of ligand structure on
conjunctive coupling reactions to furnish compound 1 (conditions of Table 2).
Also depicted is a stereochemical model for the reaction (inset).
In conclusion, we have demonstrated the ability of Ni(II)
catalysts to promote conjunctive cross-coupling of alkenyl
borates and aryl halide electrophiles.
suggest that this process operates by a net Ni(0)/Ni(II) redox
cycle similar to Pd-based catalysts. Further studies expanding
the scope of this reaction are under way.
Preliminary studies
Acknowledgements
This article is protected by copyright. All rights reserved.