Our retrosynthetic strategy for the C1-C17 subunit of
phorboxazole B is outlined in Scheme 1. We anticipated that
It is well-known that the reaction rate of functional groups
on six-membered rings is influenced by conformation.11
Examples of the attenuated reactivity of axially disposed
groups can be found in studies of conformationally con-
strained cyclohexanes,12 as well as in the steroid literature.13
Our design for achieving the differentiation of the pendant
vinyl groups (Scheme 2) was based on the selective dihy-
Scheme 1. Retrosynthesis of C1-C17 Segment of
Phorboxazole B
Scheme 2. Differentiation of the C5 and C15 Vinyl Groups
an oxazole-containing subunit such as 1 could be obtained
from the key 2,6-dioxabicyclo[3.3.1]nonan-3-one intermedi-
ate 2, itself available from an intramolecular Mitsunobu
reaction of acid diol 3. The proximity of the C3 carboxylic
acid group to the C7 alcohol in 3 would serve to differentiate
the ring hydroxyls. The strategy ultimately relied on finding
a suitable way to distinguish between the C5 (axial) and the
C15 (equatorial) vinyl groups of bis-tetrahydropyran 4,
previously synthesized in >98% ee and 75% yield from meso
tetraol 5.1
droxylation of bis-tetrahydropyran diacetate 6 at the less
hindered, equatorial C15 vinyl group.14 Commercially avail-
able AD-mix â15 yielded diol 7 in 76% yield after 3 h at 0
°C.16,17 We found that quenching the reaction after 3 h and
recycling unreacted 6 avoided exhaustive dihydroxylation
to give a 96% yield of 7 based on recovered starting material
(BORSM). Protection of the diol using 2,2-dimethoxypro-
pane (DMP) and PPTS in 1,2-dichloroethane afforded the
acetonide 8 in quantitative yield. Hydroboration/oxidation
of the remaining vinyl group using disiamyl borane/sodium
perborate gave the primary alcohol 9, thereby completing
the differential potentiation of the vinyl groups in 4.
(5) (a) Pattenden, G.; Gonza´lez, M. A.; Little, P. B.; Millan, D. S.;
Plowright, A. T.; Tornos, J. A.; Ye, T. Org. Biomol. Chem. 2003, 1, 4173.
(b) Gonza´lez, M. A.; Pattenden, G. Angew. Chem., Int. Ed. 2003, 42, 1255.
(c) Ye, T.; Pattenden, G. Tetrahedron Lett. 1998, 39, 319. (d) Pattenden,
G.; Plowwright, A. T.; Tornos, J. A.; Ye, T. Tetrahedron Lett. 1998, 39,
6099. (e) Plowright, A. T.; Pattenden, G. Tetrahedron Lett. 2000, 41, 983.
(6) (a) Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark, M. P.;
Berliner, M. A.; Reeves, J. T. Angew. Chem., Int. Ed. 2003, 42, 1258. (b)
Williams, D. R.; Clark, M. P.; Emde, U.; Berliner, M. A. Org. Lett. 2000,
2, 3023. (c) Williams, D. R.; Clark, M. P.; Berliner, M. A. Tetrahedron
Lett. 1999, 40, 2287.
(7) (a) Li, D. R.; Tu, Y-Q.; Lin, G.-Q.; Zhou, W.-S. Tetrahedron Lett.
2003, 44, 8729. (b) Liu, B.; Zhou, W.-S. Tetrahedron Lett. 2003, 44, 4933.
(c) Paterson, I.; Luckhurst, C. A. Tetrahedron Lett. 2003, 44, 3749. (d)
Greer, P. B.; Donaldson, W. A. Tetrahedron 2002, 58, 6009. (e) Huang,
H.; Panek, J. S. Org. Lett. 2001, 3, 1693. (f) Greer, P. B.; Donaldson, W.
A. Tetrahedron Lett. 2000, 41, 3801. (g) Rychnovsky, S. D.; Thomas, C.
R. Org. Lett. 2000, 2, 1217. (h) Schaus, J. V.; Panek, J. S. Org. Lett. 2000,
2, 469. (i) Wolbers, P.; Hoffmann, H. M. R.; Sasse, F. Synlett 1999, 1808.
(j) Wolbers, P.; Misske, A. M.; Hoffmann, H. M. R. Tetrahedron Lett. 1999,
40, 4527. (k) Wolbers, P.; Hoffmann, H. M. R. Synthesis 1999, 797. (l)
Misske, A. M.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 4315. (m)
Wolbers, P.; Martin, H.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905.
(n) Rychnovsky, S. D.; Hu, Y.; Ellsworth, B. Tetrahedron Lett. 1998, 39,
7271. (o) White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Lett. 2001,
3, 4003.
(11) (a) Eliel, E. L.; Wilen, S. M.; Mander, L. N. Stereochemistry of
Organic Compounds; Wiley: New York, 1994; Chapter 11, pp 720-754.
(b) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conforma-
tional Analysis; Wiley: New York, 1965.
(12) (a) Eliel, E. L.; Haubenstock, H.; Acharya, R. V. J. Am. Chem.
Soc. 1961, 83, 2351. (b) Chapman, N. B.; Shorter, J.; Toyne, K. J. J. Chem.
Soc. 1964, 1077.
(13) Smith, P. B.; McKenna, J. Tetrahedron 1964, 20, 1933.
(14) Campbell, J. E., Ph.D. Dissertation, University of Wisconsin,
Madison, WI, 2003.
(15) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.;
Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu,
D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.
(16) Although the stereochemistry at C16 is ultimately destroyed, a single
diastereomer is desirable in the context of a multistep synthesis. AD-Mix
â was chosen to provide the matched case of ligand and substrate control
as defined by the Sharpless mnemonic (ref 15) and Kishi’s empirical rule
for dihydroxylation of allylic ether systems. See: Cha, J. K.; Christ, W. J.;
Kishi, Y. Tetrahedron 1984, 40, 2247.
(8) (a) Uckun, F. M.; Forsyth, C. J. Bioorg. Med. Chem. Lett. 2001, 11,
1181. (b) Hansen, T. M.; Engler, M. M.; Forsyth, C. J. Bioorg. Med. Chem.
Lett. 2003, 13, 2127.
(9) Haustedt, L. O.; Hartung, I. V.; Hoffmann, H. M. R. Angew Chem.,
Int. Ed. 2003, 42, 2711.
(10) (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117,
8126. (b) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879. (c) Searle, P.
A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996,
118, 9422.
(17) In a related system, OsO4 alone provided signficantly less regio-
selectivity and overall yield than AD-Mix; see ref 14.
2966
Org. Lett., Vol. 6, No. 17, 2004