10 D. G. Amirsakis, A. M. Elizarov, M. A. Garcia-Garibay, P. T. Glink,
[ppm] = 1.25 (s, 72 H, CH3), 1.96 (s, br, 24 H, CH2CH2CH2), 2.64
(br, 36 H, NCH2), 3.15 (br, 16 H, SO2NHCH2), 4.12 (br, 16H, Ar-
CH2), 6.80–7.52 (m, 104 H, Ar–H, CH2CH2), 7.70 (m, 16 H, Ar–
H). 13C NMR: (100.6 MHz, CDCl3, 25 °C), [ppm] = 31.1, 35.2,
47.0, 53.1, 56.5, 62.4, 126.5, 126.7, 126.8, 127.3, 127.8, 128.8,
129.6, 127.3, 135.6, 136.6, 137.0, 156.1. MALDI-TOP-MS: m/z
J. F. Stoddart, A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed.,
2003, 42, 1126.
11 V. Darcos, K. Griffith, X. Sallenave, J.-P. Desvergne, C. Guyard-
Duhayon, B. Hasenknopf and D. M. Bassani, Photochem. Photobiol.
Sci., 2003, 2, 1152.
12 K. A. Muszkat and E. Fischer, J. Chem. Soc. B, 1967, 662.
13 (a) F. B. Mallory, C. S. Wood and J. T. Gordon, J. Am. Chem. Soc.,
1964, 86, 3094; (b) A. Momotake, M. Uda and T. Arai, J. Photochem.
Photobiol. A: Chem., 2003, 158, 7.
14 I. Grabchev and T. Philipova, Angew. Makromol. Chem., 1998, 263, 1.
15 C.-W. Ko, Y.-T. Tao, A. Daniel, L. Krzeminska and P. Tomasik, Chem.
Mater., 2001, 13, 2441.
16 N. Strashnikova, V. Papper, P. Parkhomyuk, G. I. Likhtenshtein,
V. Ratner and R. Marks, J. Photochem. Photobiol. A: Chem., 1999, 122,
133.
17 C. Sànchez, B. Villacampa, R. Alcalà, C. Martìnez, L. Oriol, M. Piñol
and J. L. Serrano, Chem. Mater., 1999, 11, 2804.
18 S.-H. Jin, S.-H. Kim and Y.-S. Gal, J. Polym. Sci. Part A: Polym. Chem.,
2001, 39, 4025.
19 H. Garcìa, Pure Appl. Chem., 2003, 75, 1085.
20 (a) C. A. Stanier, S. J. Alderman, T. D. W. Claridge and H. L.
Anderson, Angew. Chem., Int. Ed., 2002, 41, 1769; (b) H. Onagi, C. J.
Blake, C. J. Easton and S. F Lincoln, Chem. Eur. J., 2003, 9, 5978;
(c) Y. Tokunaga, K. Akasaka, K. Hisada, Y. Shimomura and S. Kakuchi,
Chem. Commun., 2003, 2250.
21 A. Simeonov, M. Matsushita, E. A. Juban, E. H. Z. Thompson, T. Z.
Hoffman, A. E. Beuscher IV, M. J. Taylor, P. Wirsching, W. Rettig,
J. K. McCusker, R. C. Stevens, D. P. Millar, P. G. Schultz, R. A.
Lerner and K. D. Janda, Science, 2000, 290, 307.
22 (a) G. R. Newkome, C. Moorefield and F. Vögtle, Dendrimers and
Dendrons: Concepts, Syntheses, Perspectives, VCH, Weinheim, 2001;
(b) Dendrons and other dendritic polymers, ed. J. M. J. Fréchet and
D. A. Tomalia, Wiley, New York, 2001.
23 V. Balzani, P. Ceroni, M. Maestri, C. Saudan and V. Vicinelli, Top. Curr.
Chem., 2003, 228, 159.
(%): 3294.7 ([C195H249N14O16S8] , 10). C238H284N14O16S8: (3853.4)
Photophysical and photochemical experiments
The photophysical properties (absorption and emission spectra,
emission quantum yields, and excited state lifetimes) have been
investigated in acetonitrile. The equipment used was peviously
described.24 Luminescence quantum yields were measured
following the method described by Demas and Crosby39 (standard
used: naphthalene in cyclohexane, = 0.23 40). The estimated
experimental errors are: 2 nm on the band maximum, 5% on the
molar extinction coefficient, 10% on the fluorescence quantum
yield, 5% on the fluorescence lifetime.
Photochemical reactions were performed on stirred solutions,
by using a Hanau Q 400 medium pressure Hg lamp (150 W).
Selection of the irradiation wavelength (313 nm) was accomplished
by the use of an interference filter. The number of incident
photons was measured by ferrioxalate actinometry.41 The E→Z
photoisomerization quantum yield (E→Z) and the composition
of the photostationary state of the isomerization reaction were
determined from the change in absorbance at 310 nm, assuming
that the absorption spectrum of the Z isomer of the stilbene units of
1 and 2 is the same as that of Z-stilbene. The estimated error on the
quantum yield and on the composition of the photostationary state
is 10%. The quantum yield of the photocyclization reaction that
converts the Z-stilbene unit of 1 into a phenanthrene unit was es-
timated from the increase in absorbance at 254 nm (phenanthrene
band). In both cases, the quantum yield values observed at low
conversion percentages (<10%) were extrapolated to t = 0 in order
to avoid interference from light absorption by the photoproducts.
24 F. Vögtle, S. Gestermann, C. Kauffmann, P. Ceroni, V. Vicinelli and
V. Balzani, J. Am. Chem. Soc., 2000, 122, 10398.
25 M.-H. Xu, J. Lin, Q.-S. Hu and L. Pu, J. Am. Chem. Soc., 2002, 124,
14239.
26 L. Pu, J. Photochem. Photobiol. A: Chem., 2003, 155, 47.
27 S. Hecht and J. M. J. Fréchet, Angew. Chem., Int. Ed., 2001, 40, 75.
28 (a) D. Grebel-Koehler, D. Liu, S. De Feyter, V. Enkelmann, T. Weil,
C. Engels, C. Samyn, K. Müllen and F. C. De Schryver, Macro-
molecules, 2003, 36, 578; (b) D. M. Junge and D. V. McGrath, Chem.
Commun., 1997, 857; (c) L.-X. Liao, F. Stellacci and D. V. McGrath, J.
Am. Chem. Soc., 2004, 126, 2181.
29 (a) R.-M. Sebastián, J.-C. Blais, A.-M. Caminade and J.-P. Majoral,
Chem. Eur. J., 2002, 8, 2172; (b) S. Li and D. V. McGrath, J. Am. Chem.
Soc., 2000, 122, 6795.
30 (a) F. Vögtle, M. Gorka, R. Hesse, P. Ceroni, M. Maestri and V. Balzani,
Photochem. Photobiol. Sci., 2002, 1, 45; (b) A. Dirksen, E. Zuidema,
R. M. Williams, L. De Cola, C. Kauffmann, F. Vögtle, A. Roque and
F. Pina, Macromolecules, 2002, 35, 2743; (c) G. C. Dol, K. Tsuda,
J.-W. Weener, M. J. Bartels, T. Asavei, T. Gensch, J. Hofkens,
L. Latterini, A. P. H. J. Schenning, B. W. Meijer and F. C. De Schryver,
Angew. Chem., Int. Ed., 2001, 40, 1710; (d) K. Tsuda, G. C. Dol,
T. Gensch, J. Hofkens, L. Latterini, J. W. Weener, E. W. Meijer and
F. C. De Schryver, J. Am. Chem. Soc., 2000, 122, 3445; (e) A. Archut,
G. C. Azzellini, V. Balzani, L. De Cola and F. Vögtle, J. Am. Chem. Soc.,
1998, 120, 12191; (f) A. Archut, F. Vögtle, L. De Cola, G. C. Azzellini,
V. Balzani, P. S. Ramanujam and R. H. Berg, Chem. Eur. J., 1998, 4,
699; (g) J. Nithyanandhan, N. Jayaraman, R. Davis and S. Das, Chem.
Eur. J., 2004, 10, 689.
31 (a) M. Imai and T. Arai, Tetrahedron Lett., 2002, 43, 5265; (b) M. Uda,
T. Mizutani, J. Hayakawa, A. Momotake, M. Ikegami, R. Nagahata
and T. Arai, Photochem. Photobiol., 2002, 76, 13; (c) J. Hayakawa,
A. Momotake and T. Arai, Chem. Commun., 2003, 94; (d) M. Imai,
M. Ikegami, A. Momotake, R. Nagahata and T. Arai, Photochem.
Photobiol. Sci., 2003, 2, 1181.
Acknowledgements
This work has been supported in Italy by MIUR (Supramolecular
Devices Project), University of Bologna (Funds for Selected
Topics). We would also like to acknowledge the generous support
from the European LIMM (Light Induced Molecular Motion, IST-
2001-35503) and SUSANA (SUpramolecular Self-Assembly of
Nano Structures, HPRN-CT-2002-00185) projects. We are also
grateful to COST D11/0007 for support.
References
1 For reviews on the photochemistry and photophysics of stilbene and
related compounds, see: (a) J. Saltiel and Y.-P. Sun, in Photochromism.
Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier,
Amsterdam, 1990, p. 64; (b) D. H. Waldeck, Chem. Rev., 1991, 91, 415;
(c) U. Mazzucato and F. Momicchioli, Chem. Rev., 1991, 91, 1679;
(d) H. Meier, Angew. Chem., Int. Ed. Engl., 1992, 31, 1399; (e) T. Arai
and K. Tokumaru, Chem. Rev., 1993, 93, 23; (f) H. Görner and
H. J. Kuhn, Adv. Photochem., 1995, 19, 1; (g) G. Bartocci, A. Spalletti
and U. Mazzucato, in Conformational Analysis of Molecules in Excited
State, ed. J. Waluk, Wiley-VCH, Weinheim, 2000, p. 237; (h) R. S. Liu,
Acc. Chem. Res., 2001, 34, 555.
2 A. R. Olson, Trans. Faraday Soc., 1931, 27, 69.
3 G. Wald, Science, 1968, 162, 232.
4 (a) W. Hub, S. Schneider, F. Dörr, J. D. Oxman and F. D. Lewis, J. Am.
Chem. Soc., 1984, 106, 701; (b) F. D. Lewis, Acc. Chem. Res., 1986, 19,
401.
32 A. Drobizhev, A. Rebane, C. Sigel, E. H. Eleandaloussi and C. W.
Spangler, Chem. Phys. Lett., 2000, 325, 375.
33 J. Luo, H. Ma, M. Haller,A. K.-Y. Jen and R. R. Barto, Chem. Commun,
2002, 888.
34 M. Lehmann, I. Fischbach, H. W. Spiess and H. Meier, J. Am. Chem.
Soc., 2004, 126, 772.
5 (a) X. Song, C. Geiger, M. Farahat, J. Perlstein and D. G. Whitten, J.
Am. Chem. Soc., 1997, 119, 12481; (b) F. D. Lewis, T. Wu, E. L. Burch,
D. M. Bassani, J.-S. Yang, S. Schneider, W. Jäjer and R. L. Letsinger, J.
Am. Chem. Soc., 1995, 117, 8785.
35 (a) J. Saltiel, A. Marinari, D. W.-L. Chang, J. C. Mitchener and
D. E. Megarity, J. Am. Chem. Soc., 1979, 101, 2982; (b) G. Fischer,
G. Seger, K. A. Muszkat and E. Fischer, J. Chem. Soc., Perkin Trans. 2,
1975, 1569.
6 G. Ciamician and P. Silber, Ber. Dtsch. Chem. Ges., 1902, 35, 4128.
7 M. S. Syamala and V. Ramamurthy, J. Org. Chem., 1986, 51, 3712.
8 W. Herrmann, M. Schneider and G. Wenz, Angew. Chem., Int. Ed. Engl.,
1997, 36, 2511.
36 F. Pina, P. Passaniti, M. Maestri, V. Balzani, F. Vögtle, M. Gorka, S.-K.
Lee, J. Van Heyst and H. Fakhrnabavi, ChemPhysChem, 2004, 5, 473.
9 S. Y. Jon, Y. H. Ko, S. H. Park, H.-J. Kim and K. Kim, Chem. Commun,
2001, 1938.
2 2 1 2
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 2 0 7 – 2 2 1 3