SYNTHESIS AND STRUCTURE OF GEMINALLY ACTIVATED NITROETHENES
879
11. Mashkovskii, M.D., Lekarstvennye sredstva
213–214°C (MeNO2); published data [31]: mp 211°C
(from MeNO2).
(Medicines), Moscow: Novaya Volna, 2012, 16th ed.
12. Zhungietu, G.I., Budylin, V.A., and Kost, A.N.,
Preparativnaya khimiya indola (Preparative Indole
Chemistry), Kishinev: Shtiintsa, 1975
13. Baron, M., Metay, E., Lemaire, M., and Popowycz, F.,
J. Org. Chem., 2012, vol. 77, no. 7, p. 3598. doi
10.1021/jo2026096
3-(1,2-Dimethyl-1H-indol-3-yl)-2-nitroprop-2-
enenitrile (21) was synthesized in a similar way from
aldehyde 4 and nitroacetonitrile; reaction time 3 h.
Yield 78%, mp 191–192°C (from MeNO2). Found, %:
N 17.51. C13H11N3O2. Calculated, %: N 17.43.
14. Aksenov, A.V., Aksenov, N.A., Skomorokhov, A.A.,
Aksenova, I.V., Gryaznov, G.D., Voskressensky, L.G.,
and Rubin, M.A., Chem. Heterocycl. Compd., 2016,
vol. 52, no. 11, p 923. doi 10.1007/s10593-017-1988-x
15. Abdelwaly, A., Salama, I., Gomaa, M.S., and Helal, M.A.,
Med. Chem. Res., 2017, vol. 26, no. 12, p. 3173. doi
10.1007/s00044-017-2011-x
16. Wang, Y.-C., Wang, J.-L., Burgess, K.S., Zhang, J.-W.,
Zheng, Q.-M., Pu, Y.-D., Yan, L.-J., and Chen, X.-B.,
RSC Adv., 2018, vol. 8, no. 11, p. 5702. doi 10.1039/
c7ra13207g
3-(1-Acetyl-1H-indol-3-yl)-2-nitroprop-2-enenitrile
(22) was synthesized in a similar way from aldehyde 5
and nitroacetonitrile. Yield 78%, mp 201–202°C (from
MeNO2). Found, %: N 16.38. C13H9N3O3. Calculated,
%: N 16.47.
CONFLICT OF INTEREST
No conflict of interest was declared by the authors.
REFERENCES
17. Zhmurov, P.A., Ushakov, P.Yu., Novikov, R.A.,
Sukhorukov, A.Yu., and Ioffe, S.L., Synlett, 2018,
vol. 29, no. 14, p. 1871. doi 10.1055/s-0037-1610213
18. Dornow, A. and Menzel, H., Justus Liebigs Ann. Chem.,
1954, vol. 588, no. 1, p. 40. doi 10.1002/jlac.19545880105
19. Aboskalova, N.I., Cand. Sci. (Chem.) Dissertation,
1. Perekalin, V.V., Sopova, A.S., and Lipina, E.S.,
Nepredel’nye nitrosoedineniya (Unsaturated Nitro
Compounds), Leningrad: Khimiya, 1982.
2. Perekalin, V.V., Lipina, E.S., Berestovitskaya, V.M., and
Efremov, D.A., Nitroalkenes. Conjugated Nitro-
compounds, Chichester: Wiley, 1994.
3. Karakhanov, R.A., Kelarev, V.I., and Polivin, Yu.N.,
Russ. Chem. Rev., 1993, vol. 62, no. 2, p. 169. doi
10.1070/RC1993v062n02ABEH000011
4. Berestovitskaya, V.M., Baichurin, R.I., and Aboskalova, N.I.,
Sopryazhennye nitroeteny, geminal’no aktivirovannye
slozhnoefirnoi, tsiano- i atsil’noi gruppami (Conjugated
Nitroethenes Geminally Activated by Ester, Cyano, and
Acyl Groups), St. Petersburg: Asterion, 2014.
Leningrad, 1971.
20. Aboskalova, N.I., Polyanskaya, A.S., and Perekalin, V.V.,
Dokl. Chem., 1967, vol. 176, no. 4, p. 861.
21. Vinograd, L.Kh. and Suvorov, N.N., Chem. Heterocycl.
Compd., 1970, vol. 6, no. 11, p. 1403. doi 10.1007/
BF00476782
22. Umezawa, S. and Zen, S., Bull. Chem. Soc. Jpn., 1963,
vol. 36, no. 9, p. 1150. doi 10.1246/bcsj.36.1150
23. Baranov, M.S. and Yampolsky, I.V., Tetrahedron Lett.,
2013, vol. 54, no. 7, p. 628. doi 10.1016/
j.tetlet.2012.11.132
24. Dornow, A. and Sassenberg, W., Justus Liebigs Ann.
Chem., 1957, vol. 602, no. 1, p. 14. doi 10.1002/
jlac.19576020102
25. Zalukaev, L.P., Sintez i reaktsii al’fa-nitroketonov
(Synthesis and Reactions of α-Nitro Ketones), Riga:
Akad. Nauk Latv. SSR, 1958.
5. Izbrannye metody sinteza i modifikatsii geterotsiklov.
Khimiya sinteticheskikh indol’nykh sistem (Selected
Methods of Synthesis and Modification of Heterocycles.
Chemistry of Sunthetic Indole Systems), Kartsev, V.G.,
Ed., Moscow: IBS, 2004, vol. 3.
6. Shul’ts, E.E., Kartsev, V.G., and Tolstikov, G.A.,
Khimiya
i
biologicheskaya aktivnost’ indol’nykh
alkaloidov (Chemistry and Biological Activity of Indole
Alkaloids), Moscow: ICSPF, 2018.
26. Babievskii, K.K., Doctoral (Chem.) Dissertation,
7. Sharma, V., Kumar, P., and Pathak, D., J. Heterocycl.
Chem., 2010, vol. 47, no. 3, p. 491. doi 10.1002/jhet.349
Moscow, 1980.
27. Kochetkov, K.A., Babievskii, K.K., Belikov, V.M.,
Garbalinskaya, N.S., and Bakhmutov, V.I., Bull. Acad.
Sci. USSR, Div. Chem. Sci., 1980, vol. 29, no. 3, p. 458.
doi 10.1007/BF00949634
8. Kaushik, N.K., Kaushik, N., Attri, P., Kumar, N., Kim, C.H.,
Verma, A.K., and Choi, E.H., Molecules, 2013, vol. 18,
no. 6, p. 6620. doi 10.3390/molecules18066620
9. Singh, T.P. and Singh, O.M., Mini Rev. Med. Chem.,
2018, vol. 18, no. 1, p. 9. doi 10.2174/
1389557517666170807123201
28. Lehnert, W., Tetrahedron, 1972, vol. 28, no. 3, p. 663.
doi 10.1016/0040-4020(72)84029-8
29. Rodríguez, R., Viñets, I., Diez, A., Rubiralta, M., and
Giralt, E., Synth. Commun., 1996, vol. 26, no. 16,
p. 3029. doi 10.1080/00397919608004608
10. Mal’tsev, O.V., Beletskaya, I.P., and Zlotin, S.G., Russ.
Chem. Rev., 2011, vol. 80, no. 11, p. 1067. doi
RC2011v080n11ABEH004249
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 89 No. 5 2019