Tita n iu m Rea gen ts for th e Syn th esis of
2-Su bstitu ted Ben zo[b]th iop h en es on th e
Solid P h a se
Christine F. Roberts and Richard C. Hartley*
Department of Chemistry, University of Glasgow,
Glasgow G12 8QQ, United Kingdom
F IGURE 1. Examples of 2-substituted benzo[b]thiophene
drugs
richh@chem.gla.ac.uk
Received April 19, 2004
Abstr a ct: Titanium(IV) benzylidenes (Schrock carbenes)
bearing a masked sulfur nucleophile in the ortho position
were generated from thioacetals with use of low-valent
titanocene complex Cp2Ti[P(OEt)3]2 and alkylidenated Mer-
rifield resin-bound esters to give enol ethers. Treatment of
the resin-bound enol ethers with a 5:5:90 mixture of TFA,
TFAA, and dichloromethane led to cleavage from resin,
removal of the tert-butyldimethylsilyl (TBDMS) protecting
group, and concomitant cyclization to complete the traceless
solid-phase synthesis (SPS) of benzothiophenes. Switching
the nature of the linker from acid-stable to acid-sensitive
ensured good purity.
F IGURE 2.
We have recently shown that titanium benzylidene
reagents13-16 3 and 4 (Figure 2) bearing a protected
oxygen or nitrogen nucleophile in the ortho position are
easy to generate from thioacetals using low-valent tita-
nium species, Cp2Ti[P(OEt)3]2 5, and benzylidenate esters
to give enol ethers.17 A range of functionality is tolerated,
including boronate, acetal, fluoro, and some amino and
carbamate groups, and the reagents have been used for
the solid-phase synthesis of benzofurans13,15,16 and in-
doles14,15 in high purity. The reagents work better on the
solid phase because of the ease of purification following
alkylidenation reaction and also ensure the high purity
of products by switching the nature of the linker from
acid-stable to acid-sensitive.
The synthesis of 2-substituted benzo[b]thiophenes is
important as such compounds have a range of useful
pharmaceutical properties. Zileuton 1, for example, is a
potent and selective inhibitor of 5-lipoxygenase,1 while
many 2-substituted benzothiophenes are selective estro-
gen receptor modulators and one such compound, raloxi-
fene 2 (Figure 1), is used to treat osteoporosis.2 Some
inhibit serine proteases, such as thrombin3,4 and factor
Xa,5 and so have potential as anticoagulants, or inhibit
the cysteine protease cathepsin K providing a potential
alternative route for the treatment of osteoporosis.6
Others may be anticancer agents reversing multidrug
resistance,7 or binding tubulin.8,9 There are also examples
of 2-substituted benzothiophenes acting as dopamine D3
receptor antagonists,10 inhibiting cell adhesion11 and
showing promise as antiallergy agents.12
We here describe adaptation of this approach to the
synthesis of 2-substituted benzo[b]thiophenes.18 We in-
tended to generate novel thio-functionalized titanium
(8) (a) Flynn, B. L.; Flynn, G. P.; Hamel, E.; J ung, M. K. Bioorg.
Med. Chem. Lett. 2001, 11, 2341-2343. Pinney, K. P.; Bounds, A. D.;
Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai, R.; Hamel, E.
Bioorg. Med. Chem. Lett. 1999, 9, 1081-1086. (b) Pinney, K. P.;
Bounds, A. D.; Dingeman, K. M.; Mocharla, V. P.; Pettit, G. R.; Bai,
R.; Hamel, E. Bioorg. Med. Chem. Lett. 1999, 9, 1081-1086.
(9) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org. Lett. 2001, 3,
651-654.
(10) Bettinetti, L.; Schlotter, K.; Hu¨bner, H.; Gmeiner, P. J . Med.
Chem. 2002, 45, 4594-4597.
(11) Boschelli, D. H.; Connor, D. T.; Lesch, M. E.; Schrier, D. J .
Bioorg. Med. Chem. 1996, 4, 557-562.
(1) Hsiao, C.-N.; Kolasa, T. Tetrahedron Lett. 1992, 33, 2629-2632.
(2) J ordan, V. C. J . Med. Chem. 2003, 46, 1081-1111.
(3) Sall, D. J .; Bastian, J . A.; Briggs, S. L.; Buben, J . A.; Chirgadze,
N. Y.; Clawson, D. K.; Denney, M. L.; Giera, D. D.; Gifford-Moore, D.
S.; Harper, R. W.; Hauser, K. L.; Klimkowski, V. J .; Kohn, T. J .; Lin,
H.-S.; McCowan, J . R.; Palkowitz, A. D.; Smith, G. F.; Takeuchi, K.;
Thrasher, K. J .; Tinsley, J . M.; Utterback, B. G.; Yan, S.-C. B.; Zhang,
M. J . Med. Chem. 1997, 40, 3489-3493.
(4) J ohnson, M. G.; Bronson, D. D.; Gillespie, J . E.; Gifford-Moore,
D. S.; Kalter, K.; Lynch, M. P.; McCowan, J . R.; Redick, C. C.; Sall, D.
J .; Smith, G. F.; Foglesong, R. J . Tetrahedron 1999, 55, 11641-11652.
(5) (a) Chou, Y.-L.; Davey, D. D.; Eagen, K. A.; Griedel, B. D.;
Karanjawala, R.; Phillips, G. B.; Sacchi, K. L.; Shaw, K. J .; Wu, S. C.;
Lentz, D.; Liang, A. M.; Trinh, L.; Morrissey, M. M.; Kochanny, M. J .
Bioorg. Med. Chem. Lett. 2003, 13, 507-511. (b) Maignan, S.; Guillo-
teau, J .-P.; Choi-Sledeski, Y. M.; Becker, M. R.; Ewing, W. R.; Pauls,
H. W.; Spada, A. P.; Mikol, V. J . Med. Chem. 2003, 46, 685-690. (c)
Shrader, W. D.; Young, W. B.; Sprengeler, P. A.; Sangalang, J . C.;
Elrod, K.; Carr, G. Bioorg. Med. Chem. Lett. 2001, 11, 1801-1804.
(6) Fenwick, A. E.; Garnier, B.; Gribble, A. D.; Ife, R. J .; Rawlings,
A. D.; Witherington, J . Bioorg. Med. Chem. Lett. 2001, 11, 195-198.
(7) Norman, B. H.; Dantzig, A. H.; Kroin, J . S.; Law, K. L.; Tabas,
L. B.; Shepard, R. L.; Palkowitz, A. D.; Hauser, K. L.; Winter, M. A.;
Sluka, J . P.; Starling, J . J . Bioorg. Med. Chem. Lett. 1999, 9, 3381-
3386.
(12) Connor, D. T.; Cetenko, W. A.; Mullican, M. D.; Sorenson, R.
J .; Unangst, P. C.; Weikert, R. J .; Adolphson, R. L.; Kennedy, J . A.;
Thueson, D. O.; Wright, C. D.; Conroy, M. C. J . Med. Chem. 1992, 35,
958-965.
(13) Guthrie, E. J .; Macritchie, J .; Hartley, R. C. Tetrahedron Lett.
2000, 41, 4987-4990.
(14) Macleod, C.; Hartley, R. C.; Hamprecht, D. W. Org. Lett. 2002,
4, 75-78.
(15) Macleod, C.; McKiernan, G. J .; Guthrie, E. J .; Farrugia, L. J .;
Hamprecht, D. W.; Macritchie, J .; Hartley, R. C. J . Org. Chem. 2003,
68, 387-401.
(16) McKiernan, G. J .; Hartley, R. C. Org. Lett. 2003, 5, 4389-4392.
(17) Hartley, R. C.; McKiernan, G. J . J . Chem. Soc., Perkin Trans.
1 2002, 2763-2793.
(18) Roberts, C. F.; Hartley, R. C. Abstr. Pap. Am. Chem. Soc. 2003,
226, 388-ORGN.
10.1021/jo049344o CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/30/2004
J . Org. Chem. 2004, 69, 6145-6148
6145