Communication
ChemComm
I. Ryu, Acc. Chem. Res., 2018, 51, 2023–2035; (c) J.-B. Peng, F.-P. Wu
and X.-F. Wu, Chem. Rev., 2019, 119, 2090–2127.
2 A. C. Bissember, A. Levina and G. C. Fu, J. Am. Chem. Soc., 2012, 134,
14232–14237.
3 (a) B. T. Sargent and E. J. Alexanian, J. Am. Chem. Soc., 2016, 138,
7520–7523; (b) L.-J. Cheng, S. M. Islam and N. P. Mankad, J. Am.
Chem. Soc., 2018, 140, 1159–1164; (c) Y. Chen, L. Su and H. Gong,
Org. Lett., 2019, 21(12), 4689–4693; (d) L.-J. Cheng and N. P. Mankad,
J. Am. Chem. Soc., 2020, 142, 80–84; (e) R. Cheng, H.-Y. Zhao,
S. Zhang and X. Zhang, ACS Catal., 2020, 10, 36–42.
4 T. A. Hamlin, M. Swart and F. M. Bickelhaupt, ChemPhysChem, 2018,
19, 1315–1330.
5 See the ESI‡ for the reaction details.
6 M. R. Dubois, Chem. Rev., 1989, 89, 1–9.
7 (a) J. J. Jackson, H. Kobayashi, S. D. Steffens and A. Zakarian, Angew.
Chem., Int. Ed., 2015, 54, 9971–9975; (b) V. Hirschbeck, P. H. Gehrtz
and I. Fleischer, Chem. – Eur. J., 2018, 24, 7092–7107; (c) L. Qiao and
X. Jiang, Org. Lett., 2016, 18, 1550–1553; (d) Y.-T. Huang, S.-Y. Lu,
C.-L. Yi and C.-F. Lee, J. Org. Chem., 2014, 79, 4561–4568;
(e) Y. Zhang, P. Ji, W. Hu, Y. Wei, H. Huang and W. Wang,
Chem. – Eur. J., 2019, 25, 8225–8228.
Scheme 2 Plausible mechanism.
8 (a) Y. Hu, J. Liu, Z. Lu, X. Luo, H. Zhang, Y. Lan and A. Lei, J. Am.
Chem. Soc., 2010, 132, 3153–3158; (b) M. N. Burhardt, R. H. Taaning
and T. Skrydstrup, Org. Lett., 2013, 15, 948–951; (c) M. N. Burhardt,
A. Ahlburg and T. Skrydstrup, J. Org. Chem., 2014, 79, 11830–11840;
(d) H. Cao, L. McNamee and H. Alper, J. Org. Chem., 2008, 73,
3530–3534; (e) W.-J. Xiao and H. Alper, J. Org. Chem., 1998, 63,
7939–7944; ( f ) W.-J. Xiao and H. Alper, J. Org. Chem., 2001, 66,
6229–6233.
Based on the above studies and previous reports,17,23
although a more detailed mechanism requires additional studies,
we tentatively propose a plausible scenario as shown in Scheme 2.
The rhodium(I) complex A irreversibly reacts with the thiol to
generate the rhodium(II) tightly associated radical complex B. In
the presence of base, the carbon-centered radical intermediate C
is then formed by the radical transfer process. This step is
followed by combination of the carbon-centered radical and the
rhodium(II) complex. The resulting alkylrhodium(III) species D
then provide the acylrhodium complex E through CO migratory
insertion. The overall catalytic conversion is then completed by
reductive elimination to produce the final thioester product and
meanwhile releases Rh(I) complex for the next catalytic cycle. It is
important to note that the possibility, the catalytic cycle begin
with the rhodium(I) catalyst abstracts a halogen atom to form the
rhodium(II) species, cannot be fully excluded (path b).
In summary, we have discovered a rhodium-catalyzed carbony-
lative coupling of thiophenols with alkyl halides. This study
suggests that rhodium catalyst might lead to the foundation of
discoveries within the field of carbonylative coupling of alkyl
halides and strong nucleophiles. The wide substrates scope of
the method suggests this protocol can be a powerful alternative
to known methodologies for thioesters synthesis. The mechanism
studies support a proposed organometallic-radical pathway.
9 G. M. Torres, Y. Liu and B. A. Arndtsen, Science, 2020, 368,
318–323.
10 (a) S. Otsuka, K. Nogi and H. Yorimitsu, Top. Curr. Chem., 2018, 376,
1–39; (b) L. Wang, W. He and Z. Yu, Chem. Soc. Rev., 2013, 42,
599–621; (c) F. Pan and Z.-J. Shi, ACS Catal., 2014, 4, 280–288;
(d) T. Kondo and T. Mitsudo, Chem. Rev., 2000, 100, 3205–3220;
(e) A. N. Desnoyera and J. A. Love, Chem. Soc. Rev., 2017, 46, 197–238;
( f ) X.-F. Wu and H. Neumann, ChemCatChem, 2012, 4, 447–458.
11 (a) X. Qi, R. Zhou, H.-J. Ai and X.-F. Wu, J. Catal., 2020, 381, 215–221;
(b) H.-J. Ai, H. Wang, C.-L. Li and X.-F. Wu, ACS Catal., 2020, 10,
5147–5152; (c) H.-J. Ai, Y. Zhang, F. Zhao and X.-F. Wu, Org. Lett.,
2020, 22, 6050–6054.
12 Tertiary iodides only provided the thioether products on these
conditions. Secondary iodides were viable substrates, but with
o10% yields owing to their relative high activity.
13 M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, D. Vogt
and W. Keim, J. Chem. Soc., Chem. Commun., 1995, 2177–2178.
14 H. Finkelstein, Ber. Dtsch. Chem. Ges., 1910, 43, 1528–1532.
15 J. Hartwig, Organotransition Metal Chemistry: From Bonding to
Catalysis, University Science Books, Sausalito, CA, 2010, pp 301–320.
16 J. E. Baldwin, Chem. Rev., 2003, 103, 1197–1212.
17 (a) R. N. Loy and M. S. Sanford, Org. Lett., 2011, 13, 2548–2551;
(b) J. A. Labinger, Organometallics, 2015, 34, 4784–4795.
18 (a) D. Shu, X. Li, M. Zhang, P. J. Robichaux, I. A. Guzei and W. Tang,
J. Org. Chem., 2012, 77, 6463–6472; (b) X. Li, M. Zhang, D. Shu,
P. J. Robichaux, S. Huang and W. Tang, Angew. Chem., Int. Ed., 2011,
50, 10421–10424.
Conflicts of interest
19 see Table 1 for the details of the model reaction.
20 G. R. Buettner, Free Radical Biol. Med., 1987, 3, 259–303.
21 The specific parameters of the simulation: see ESI‡.
22 (a) B. B. Wayland, A. E. Sherry and A. G. Bunn, J. Am. Chem. Soc.,
1993, 115, 7675–7684; (b) S. Deblon, L. Liesum, J. Harmer,
There are no conflicts to declare.
Notes and references
¨
H. Schonberg, A. Schweiger and H. Gru¨tzmacher, Chem. – Eur. J.,
1 For selected reviews, see: (a) C. F. J. Barnard, Organometallics, 2008,
2002, 8, 601–611.
27, 5402–5422; (b) H. Matsubara, T. Kawamoto, T. Fukuyama and 23 G. C. Fu, ACS Cent. Sci., 2017, 3, 692–700.
1469 | Chem. Commun., 2021, 57, 1466À1469
This journal is The Royal Society of Chemistry 2021