10.1002/anie.201913062
Angewandte Chemie International Edition
COMMUNICATION
[9]
J. M. Smith, S. J. Harwood, P. S. Baran, Acc. Chem. Res. 2018,
51, 1807–1817.
Foundation (CHE-1800280), the Alfred P. Sloan Fellowship
Program, and the Camille Dreyfus Teacher-Scholar
Program. We further acknowledge the NSF for a Graduate
Research Fellowship (DGE-1346837, J.D.), the Kwanjeong
Educational Foundation for a Graduate Fellowship (T.K.),
and Dr. Art Olson and Shirley King for funding a high school
internship (K.L.X.). We thank Professor Phil S. Baran for
helpful discussions. We further thank Prof. Arnold L.
Rheingold and Dr. Milan Gembicky (UCSD) for X-ray
crystallographic analysis.
[10] For examples of decarboxylative cross-coupling using redox-
active esters, see: a) J. Cornella, J. T. Edwards, T. Qin, S.
Kawamura, J. Wang, C.-M. Pan, R. Gianatassio, M. A. Schmidt,
M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138,
2174–2177; b) C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S.
Peters, M. Kumar, A. W. Yu, K. A. Johnson, A. K. Chatterjee, M.
Yan, P. S. Baran, Science 2017, 356, eeam7355; c) J. T.
Edwards, R. R. Merchant, K. S. McClymont, K. W. Knouse, T.
Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. Wei, T.
Zhou, M. D. Eastgate, P. S. Baran, Nature 2017, 545, 213–218.
For examples of carboxylate/carboxamide-directed C(sp3)–H
activation followed by decarboxylative coupling, see: d) J. C.
Beck, C. R. Lacker, L. M. Chapman, S. E. Reisman, Chem. Sci.
2019, 10, 2315–2319; e) M. Shang, K. S. Feu, J. C. Vantourout,
L. M. Barton, H. L. Osswald, N. Kato, K. Gagaring, C. W.
McNamara, G. Chen, L. Hu, S. Ni, P. Fernández-Canelas, M.
Chen, R. R. Merchant, T. Qin, S. L. Schreiber, B. Melillo, J.-Q.
Yu, P. S. Baran, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 8721–
8727.
[11] For examples of carboxylate-directed reactions with other metal
catalysts, see: a) R. Giri, N. Maugel, J.-J. Li, D.-H. Wang, J. Am.
Chem. Soc. 2007, 129, 3510–3511; b) J. Li, W. Yang, S. Yang, L.
Huang, W. Wu, Y. Sun, H. Jiang, Angew. Chem. Int. Ed. 2014,
53, 7219–7222; Angew. Chem. 2014, 126, 7347–7350; c) S.
Desrat, P. J. Gray, M. R. Penny, W. B. Motherwell, Chem. Eur. J.
2014, 20, 8918–8922; d) E. Erbing, A. Sanz-Marco, A. Vázquez-
Romero, J. Malmberg, M. J. Johansson, E. Gómez-Bengoa, B.
Martín-Matute, ACS Catal. 2018, 8, 920–925; e) T. R. Huffman,
Y. Wu, A. Emmerich, R. A. Shenvi, Angew. Chem. Int. Ed. 2019,
58, 2371–2376; Angew. Chem. 2019, 2393–2398; f) P. Dolui, J.
Das, H. B. Chandrashekar, S. S. Anjana, D. Maiti, Angew. Chem.
Int. Ed. 2019, 58, 13773–13777; Angew. Chem. 2019, 131,
13911–13915; g) J. Jiang, H. Liu, L. Cao, C. Zhao, Y. Liu, L.
Ackermann, Z. Ke, ACS Catal. 2019, 9, 9387–9392.
Keywords: nickel • diarylation • carboxylic acid •
trifunctionalization
[1]
For representative reviews on alkene functionalization, see: a) V.
Saini, B. J. Stokes, M. S. Sigman, Angew. Chem. Int. Ed. 2013,
52, 11206–11220; Angew. Chem. 2013, 125, 11414–11429; b)
Coombs, J. R.; Morken, J. P. Catalytic Enantioselective
Functionalization of Unactivated Terminal Alkenes. Angew.
Chem. Int. Ed. 2016, 55, 2636–2649; Angew. Chem. 2016, 128,
2682–2696.
[2]
For representative reviews on conjunctive cross-coupling, see: a)
J. Derosa, V. T. Tran, V. A. van der Puyl, K. M. Engle,
Aldrichimica Acta 2018, 51, 21–32; b) R. Giri, S. KC, J. Org.
Chem. 2018, 83, 3013–3022.
[3]
a) B. J. Stokes, L. Liao, A. M. de Andrade, Q. Wang, M. S.
Sigman, Org. Lett. 2014, 16, 4666–4669; b) K. B. Urkalan, M. S.
Sigman, Angew. Chem. Int. Ed. 2009, 48, 3146–3149; Angew.
Chem. 2009, 121, 3192–3195; c) Z. Kuang, K. Yang, Q. Song,
Org. Chem. Front. 2017, 4, 1224–1228; d) S. KC, R. K.
Dhungana, B. Shrestha, S. Thapa, N. Khanal, P. Basnet, R. W.
Lebrun, R. Giri, J. Am. Chem. Soc. 2018, 140, 9801–9805; e) P.
Gao, L.-A. Chen, M. K. Brown, J. Am. Chem. Soc. 2018, 140,
10653–10657; f) M. Catellani, G. P. Chiusoli, S. A. Concari,
Tetrahedron 1989, 45, 5263–5268; g) K. M. Shaulis, B. L. Hoskin,
J. R. Townsend, F. E. Goodson, C. D. Incarvito, A. L. Rheingold,
J. Org. Chem. 2002, 67, 5860–5863; h) D. Anthony, Q. Lin, J.
Baudet, T. Diao, Angew. Chem. Int. Ed. 2019, 58, 3198–3202;
Angew. Chem. 2019, 131, 3230–3234.
[12] F. Wang, J. Li, A. L. Sinn, W. E. Knabe, M. Khanna, I. Jo, J. M.
Silver, K. Oh, L. Li, G. E. Sandusky, G. W. Sledge Jr., H.
Nakshatri, D. R. Jones, K. E. Pollok, S. O. Meroueh, J. Med.
Chem. 2011, 54, 7193–7205.
[13] In the following reference, no yield was reported for the four-step
sequence to access 2ab: S. H. Lee, I.-O. Kim, C. S. Cheong, B.
Y. Chung, Arch. Pharm. Chem. Life Sci. 1999, 332, 333–336.
[14] M. C. Jetter, M. A. Youngman, J. J. McNally, M. E. McDonnel, S.-
P. Zhang, A. E. Dubin, N. Nasser, E. E. Codd, C. M. Flores, S. L.
Dax, Bioorg. Med. Chem. Lett. 2007, 17, 6160–6163.
[4]
a) J. Derosa, V. T. Tran, M. N. Boulous, J. S. Chen, K. M. Engle,
J. Am. Chem. Soc. 2017, 139, 10657–10660; b) B. Shrestha, P.
Basnet, R. K. Dhungana, S. KC, S. Thapa, J. M. Sears, R. Giri, J.
Am. Chem. Soc. 2017, 139, 10653–10656; c) W. Li, J. K. Boon,
Y. Zhao, Chem. Sci. 2018, 9, 600–607; d) S. Thapa, R. K.
Dhungana, R. T. Magar, B. Shrestha, S. KC, R. Giri, Chem. Sci.
2018, 9, 904–909; e) P. Basnet, R. K. Dhungana, S. Thapa, B.
Shrestha, S. KC, J. M. Sears, R. Giri, J. Am. Chem. Soc. 2018,
140, 7782–7786; f) P. Basnet, S. KC, R. K. Dhungana, B.
Shrestha, T. J. Boyle, R. Giri, J. Am. Chem. Soc. 2018, 140,
15586–15590.
[15] Though electron-rich aryl iodides typically provide higher yields,
electron-poor aryl iodides react with similar rates. Low yield in
these cases is attributed to increased formation of
uncharacterized byproducts.
[16] Aryl boronates containing the Bnep group have been previously
found to be superior to those with Bpin in nickel-catalyzed cross-
coupling reactions. For examples, see Refs. 3e, 7a and the
following: (a) J. Hu, Y. Zhao, J. Liu, Y. Zhang, Z. Shi, Angew.
Chem. Int. Ed. 2016, 55, 8718–8722; Angew. Chem. 2016, 128,
8860–8864; (b) R. Martin-Montero, T. Krolikowski, C. Zarate, R.
Manzano, R. Martin, Synlett 2017, 28, 2604–2608; (c) T.
Shimasaki, Y. Konno, M. Tobisu, N. Chatani, Org. Lett. 2009, 11,
4890–4892.
[5]
a) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52,
11726–11743; Angew. Chem. 2013, 125, 11942–11959; b) O.
Daugulis, J. Roane, L. D. Tran, Acc. Chem. Res. 2015, 48, 1053–
1064; c) C. Lin, L. Shen, ChemCatChem 2019, 11, 961–968.
a) J. Derosa, V. A. van der Puyl, V. T. Tran, M. Liu, K. M. Engle,
Chem. Sci. 2018, 9, 5278–5283; b) V. A. van der Puyl, J. Derosa,
K. M. Engle, ACS Catal. 2019, 9, 224–229.
[6]
[7]
a) J. Derosa, R. Kleinmans, V. T. Tran, M. K. Karunananda, S. R.
Wisniewski, M. D. Eastgate, K. M. Engle, J. Am. Chem. Soc.
2018, 140, 17878–17883; b) V. T. Tran, Z. Li, T. J. Gallagher, J.
Derosa, P. Liu, K. M. Engle, ChemRxiv 2019, DOI:
10.26434/chemrxiv.7961633.
[17] In the case of these longer chain alkenyl carboxylic acids, only
unreacted starting material remained.
[18] When the reaction was performed in the presence of a drop of
mercury, we observed 60% 1H NMR yield of the desired product
2a, ruling out the possibility of heterogeneous catalysis.
[8]
For examples of chelating electrophiles in C(sp3)–C(sp3) cross-
coupling, see: a) N. A. Owston, G. C. Fu, J. Am. Chem. Soc.
2010, 132, 11908–11909; b) A. Wilsily, F. Tramutola, N. A.
Owston, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 5794–5797.
This article is protected by copyright. All rights reserved.