Bazzicalupi et al.
JOCArticle
In this context, the design of synthetic receptors able to
bind phosphate anions in aqueous solution represents one of
the approaches to the analysis of the weak forces which
regulate the recognition processes in biological systems.2
Actually, several examples of nucleotide anion binding by
synthetic receptors, mostly of polyammonium type, have
been recently reported.3-29 Similarly to natural systems, the
formation of stable host-guest adducts requires the incor-
poration in the receptor of sites for multiple interactions with
substrates. In fact, to achieve a better recognition of nucleo-
tide anions, the receptor needs to contain not only positively
charged ammonium groups able to interact with the anionic
phosphate moiety but also binding sites able to interact via
hydrogen bonding or π-stacking with the nucleobases or the
sugar moieties.2-11,13,19-21 Finally, the binding sites of the
receptor need to be opportunely preorganized to optimally
interact with the anionic substrate. From this point of view,
encapsulation of the nucleotide, or of a portion of the
nucleotide, in clefts or cavities of the receptor may strengthen
the overall host-guest interaction affording particularly
stable adducts or favoring recognition of a selected nucleo-
tide anion. Actually, encapsulation of a determined subunits
of nucleotides, e.g., the phosphate chain or the nucleobase,
within the cavity of cyclic polyammonium receptors has
been often proposed on the basis of molecular modeling
results.4,5
(1) (a) Hirsch, A. K. H.; Fischer, F. R.; Diederich, F. Angew. Chem., Int.
Ed. 2007, 46, 338–352. (b) Dugas, H. Bioorganic Chemistry: a Chemical
Approach to Enzyme Action; Springer: New York, 1996. (c) Davidson, A. M. L.;
Dassa, E.; Orelle, C.; Chen, J. Microbiol. Mol. Biol. Rev. 2008, 72, 317–364.
(d) Alton, G. R.; Lunney, E. A. Expert Opin. Drug Discovery 2008, 3, 595–605.
(e) Lewis, J. A.; Lebois, E. P.; Lindsley, C. W. Curr. Opin. Chem. Biol. 2008, 12,
269–280. (f) Matte, A.; Delbaere, L. T. J. Handbook Proteins 2007, 1, 114–118.
(g) Turk, B. E. Curr. Opin. Chem. Biol. 2008, 12, 4–10. (h) Hollenstein, K.;
Dawson, R. J. P.; Locher, K. P. Curr. Opin. Struct. Biol. 2007, 17, 412–418.
(i) Morrow, J. R.; Amyes, T. L.; Richard, J. P. Acc. Chem. Res. 2008, 41, 539–
548. (l) Rye, C. S.; Baell, J. B. Curr. Med. Chem. 2005, 12, 3127–3141.
(2) Selected reviews: (a) Atwood, J. L.; Holman, K. T.; Steed, J. W. Chem.
Commun. 1996, 1401–1407. (b) Fabbrizzi, L.; Licchelli, M.; Rabaioli, G.;
Taglietti, A. Coord. Chem. Rev. 2000, 205, 85–108. (c) Amendola, V;
Bonizzoni, M.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M.; Sancenon,
~
F.; Taglietti, A. Coord. Chem. Rev. 2006, 250, 1451–1470. (d) Garcia Espana,
E.; Diaz, P.; Llinares, J. M.; Bianchi, A. Coord. Chem. Rev. 2006, 250, 2952–
~
2980. (e) Bianchi, A., Garcia-Espana, E., Bowman-James K., Eds. Supramole-
cular Chemistry of Anions; Wiley-VCH: New York, 1997. (f) Tamaru, S.;
Hamachi, I. Struct. Bonding 2008, 129, 95–125. (g) Katayev, E. A.; Ustynyuk,
Y. A.; Sessler, J. L. Coord. Chem. Rev. 2006, 250, 3004–3037. (h) Caltagirone,
C.; Gale, P. A. Chem. Soc. Rev. 2009, 38, 520–563. (i) Kim, S. K.; Lee, D. H.;
Hong, J.; Yoon, J. Acc. Chem. Res. 2009, 42, 23–31. (j) Kang, S. O.; Hossain,
M. A.; Bowman-James, K. Coord. Chem. Rev. 2006, 250, 3038–3052.
(k) Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M.
Coord. Chem. Rev. 2006, 250, 3094–3117. (l) Lankshear, M. D.; Beer, P. D.
Coord. Chem. Rev. 2006, 250, 3142–3160. (m) Gimeno, N.; Vilar, R. Coord.
Chem. Rev. 2006, 250, 3161–3189. (n) Gale, P. A.; Quesada, R. Coord. Chem.
Rev. 2006, 250, 3219–3244. (o) Amendola, V.; Fabbrizzi, L. Chem. Commun.
2009, 513–531. (p) Kubik, S. Chem. Soc. Rev. 2009, 38, 585–605. (q) Chmie-
lewski, M. J.; Davis, J. J.; Beer, P. D. Org. Biomol. Chem. 2009, 7, 415–424.
(r) Parola, A. J.; Lima, J. C.; Lodeiro, C.; Pina, F. Springer Ser. Fluoresc. 2008, 4,
117–149. (s) Gamez, P.; Mooibroek, T. J.; Teat, S. J.; Reedijk, J. Acc. Chem. Res.
2007, 40, 435–444. (t) Kang, S. O.; Begum, R. A.; Bowman-James, K. Ang.
Chem. Int.Ed. 2006, 45, 7882–7894. (u) Anzenbacher, P.; Nishiyabu, R.;
Palacios, M. A. Coord. Chem. Rev. 2006, 250, 2929–2938. (v) Schmidtchen,
F. P. Coord. Chem. Rev. 2006, 250, 2918–2928. (w) Schmidtchen, F. P.; Berger,
M. Chem. Rev. 1997, 97, 1609–1646. (y) de Silva, A. P.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E.
Chem. Rev. 1997, 97, 1515–1566.
The insertion of heteroaromatic subunits with fluoro-
genic characteristics within the receptor structure may
represent an important “added value” to this class of
receptors. In fact, in this case, the aromatic moiety can be
used not only to bind the substrates via π-stacking and or
hydrophobic interactions but also to signal their presence
in solution, thanks to quantifiable changes of its emission
properties.2,12-29
(17) Casasus, R.; Climent, E.; Marcos, M. D.; Martinez-Manez, R.;
Sancenon, F.; Soto, J.; Amoros, P.; Cano, J.; Ruiz, E. J. Am. Chem. Soc.
2008, 130, 1903–1917.
(18) Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Macedi,
E.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. Inorg. Chem. 2009, 48,
5901–5912.
(19) (a) Sakamoto, T.; Ojida, A.; Hamachi, H. I. Chem. Commun. 2009,
141–152. (b) Ojida, A.; Nanaka, H.; Miyahara, Y.; Tamaru, S.; Sada, K.;
Hamachi, I. Angew. Chem., Int. Ed. 2006, 45, 5518–5521. (c) Ojida, A.;
Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. J. Am. Chem. Soc. 2008,
130, 12095–12101.
(3) (a) Hosseini, M. W.; Blaker, A. J.; Lehn, J. M. J. Am. Chem. Soc. 1990,
112, 3896–3904. (b) Dhaenens, M.; Lehn, J. M.; Vigneron, J. P. J. Chem.
Soc., Perkin Trans. 2 1993, 1379–1381.
€
(4) (a) Schneider, H. J.; Blatter, T.; Palm, B.; Pfingstag, U.; Rudiger, V.;
Theis, I. J. Am. Chem. Soc. 1992, 114, 7704–7708. (b) Eliseev, A. V.;
Schneider, H. J. J. Am. Chem. Soc. 1994, 116, 6081–6088.
~
(5) (a) Aguilar, J. A.; Garcia-Espana, E.; Guerrero, J. A.; Luis, S. V.;
Llinares, J. M.; Miravet, J. F.; Ramirez, J. A.; Soriano, C. J. Chem. Soc.,
Chem. Commun. 1995, 2237–2238. (b) Aguilar, J. A; Celda, B.; Fusi, V.;
(20) Casasus, R.; Climent, E.; Marcos, M. D.; Martinez-Manez, R.;
Sancenon, F.; Soto, J.; Amoros, P.; Cano, J.; Ruiz, E. J. Am. Chem. Soc.
2008, 130, 1903–1917.
~
Garcia-Espana, E.; Luis, S. V.; Martinez, M. C.; Ramirez, J. A.; Soriano, C.;
Tejero, R. J. Chem. Soc., Perkin Trans. 2 2000, 1323–1328.
(6) Furuta, H.; Magda, D.; Sessler, J. L. J. Am. Chem. Soc . 1991, 113,
978–985.
(7) Menger, F. M.; Catlin, K. K. Angew. Chem., Int. Ed. Engl. 1995, 34,
2147–2150.
(8) (a) Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Faggi, E.; Giorgi, C.;
Santarelli, S.; Valtancoli, B. J. Am. Chem. Soc. 2008, 130, 2440–2441.
(b) Arturoni, E.; Bazzicalupi, C.; Bencini, A.; Caltagirone, C.; Danesi, A.;
Giorgi, C.; Garau, A.; Lippolis, V.; Valtancoli, B. Inorg. Chem. 2008, 47,
6651–6563.
(21) Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P.
J. Org. Chem. 2008, 73, 4034–40.
(22) Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P. Angew. Chem.,
Int. Ed. 2007, 46, 7849–7852.
(23) Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S. K.;
Das, A. Org. Lett. 2007, 9, 1979–1982.
(24) Khatua, S.; Choi, S. H.; Lee, J.; Kim, K.; Do, Y.; Churchill, D. G.
Inorg. Chem. 2009, 48, 2993–2999.
(25) Sun, Y.; Zhong, C.; Gong, R.; Fu, E. Org. Biomol. Chem. 2008, 6,
3044–3047.
~
(9) Padilla-Tosta, M. E.; Lloris, J. M.; Martinez-Manez, R.; Pardo, T.;
(26) Ghosh, A.; Shrivastav, A.; Jose, D. A.; Mishra, S. K.; Chandrakanth,
C. K.; Mishra, S.; Das, A. Anal. Chem. 2008, 80, 5312–5319.
(27) Wang, H.; Chan, W. H. Org. Biomol. Chem. 2008, 6, 162–168.
(28) Lee, H. N.; Xu, Z.; Kim, S. K.; Swamy, K. M. K; Kim, Y.; Kim, S. J.;
Yoon, J. J. Am. Chem. Soc. 2007, 129, 3828–3829.
Soto, J.; Benito, A.; Marcos, M. D. Inorg. Chem. Commun. 2000, 3, 45–48.
(10) Vickers, M. S.; Martindale, K. S.; Beer, P. D. J. Mat. Chem. 2005, 15,
2784–2790.
(11) Delepine, A. S.; Tripier, R.; Handel, H. Org. Biomol. Chem. 2008, 6,
1743–1750.
(12) Kwon, J. Y.; Singh, N. J.; Kim, H. N.; Kim, S. K.; Kim, K. S.; Yoon,
J. J. Am. Chem. Soc. 2004, 126, 8892–8893.
(13) Huston, M. E.; Akkaya, E. U.; Czarnik, A. W. J. Am. Chem. Soc.
1989, 111, 8735–8736.
(29) Lee, D. H.; Kim, S. Y.; Hong, J. I. Angew. Chem., Int. Ed. 2004, 43,
4777–4780.
(30) (a) Bazzicalupi, C.; Bencini, A.; Biagini, S.; Bianchi, A.; Faggi, E.;
Giorgi, C.; Marchetta, M.; Totti, F.; Valtancoli, B. Chem.;Eur. J. 2009, 15,
8049–8063. (b) Bazzicalupi, C.; Bencini, A.; Bussotti, L.; Berni, E.; Biagini,
S.; Faggi, E.; Foggi, P.; Giorgi, C.; Lapini, A.; Marcelli, A.; Valtancoli, B.
Chem. Commun. 2007, 1230–1232. (c) Bazzicalupi, C.; Bencini, A.; Bianchi,
A.; Borsari, L.; Danesi, A.; Giorgi, C.; Lodeiro, C.; Mariani, P.; Pina, F.;
Santarelli, S.; Tamayo, A.; Valtancoli, B. Dalton Trans. 2006, 33, 4000–4010.
(d) Lodeiro, C.; Parola, A. J.; Pina, F.; Bazzicalupi, C.; Bencini, A.; Bianchi,
A.; Giorgi, C.; Masotti, A.; Valtancoli, B. Inorg. Chem. 2001, 40, 2968–2975.
(e) Bencini, A.; Bernardo, M. A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Pina, F.;
Valtancoli, B. Eur. J. Inorg. Chem. 1999, 1911–1918.
(14) Kejik, Z.; Zaruba, K.; Michalik, D.; Sebek, J.; Dian, J.; Pataridis, S.;
Volka, K.; Kral, V. Chem. Commun. 2006, 1533–1535.
(15) Atilgan, S.; Akkaya, E. U. Tetrahedron Lett. 2004, 45, 9269–9271.
~
(16) (a) Albenda, M. T.; Bernardo, M. A.; Garcia-Espana, E.; Godino-
Salido, M. L.; Luis, S. V.; Melo, M. J.; Pina, F.; Soriano, C. J. Chem. Soc.,
Perkin Trans. 2 1999, 2545–2549. (b) Aucejo, R.; Diaz, P.; Garcia-Espana, E.;
Alarcon, J.; Delgado-Pinar, E.; Torres, F.; Soriano, C.; Guillem, C. M.
New J. Chem. 2007, 31, 44–51.
7350 J. Org. Chem. Vol. 74, No. 19, 2009