CH3), 10.8 (pt, 1J(CP) = 11.6 Hz, CH2P), 1.42 (sbr, CH3Si), 1.11 (sbr,
−
2J(SiP) = 14 Hz, Si1); P(CD2Cl2): 25.3 (s, PPh2), −144.2 (sep, PF6 ).
−
CH3Si); P(CDCl3): 29.3 (s, PPh2), −144.3 (sep, PF6 ). MS (ES+):
MS (ES+): 937 [M − 3PF6]3+, 667.0 [M − 4PF6]4+. IR: max/cm−1
m/z = 727.6 [M − PF6]2+.
(CN) 1647, 1616 (KBr).
[Si0(C1H2C2H2Si1(CH3)2CH2PPh2RuCl(4,4′-bipy)(p-cymene))4]-
[PF6]4 (1[Ru(bipy)]44+). Asolution of 1[Ru]4 (215 mg, 0.09 mmol)
in 10 ml of methanol was added to a solution of 4,4′-bipyridine
(280 mg, 1.76 mmol) in 10 ml of methanol, dropwise and with
vigorous stirring. The mixture was stirred for 24 h. Then, a solution
of NH4PF6 (63 mg, 0.36 mmol) in 5 ml of methanol was added
and stirred for 2 h. The orange solid was filtered off, washed
several times with diethyl ether and dried under vacuum. (195 mg,
63%). H(CD2Cl2): 8.74 (m, 16H, bipy(H, H′)), 7.91 (m, 8H,
o-C6H5), 7.71 (m, 8H, m-C6H5), 7.66 (m, 4H, p-C6H5), 7.51 (m,
8H, bipy(H′)), 7.46 (d, 8H, 3J(HH) = 6.8 Hz, bipy(H)), 7.39 (m,
8H, o′-C6H5), 7.20 (m, 4H, p′-C6H5), 7.08 (m, 8H, m′-C6H5), 5.36
[Si0(C1H2C2H2Si1(CH3)2CH2PPh2RuCl(p-cymene)(pyPPh2-
AuCl))4][PF6]4 (1[RuAu]44+). Experimental conditions and workup
4+
were identical to those for the preparation of 1[Ru(bipy)]4
.
(46 mg, 53%). H(CD2Cl2): 8.77 (sbr, 8H, py(H)), 7.98–7.05 (m,
88H, C6H5, py(H)), 5.47–4.99 (m, 16H, C6H4), 2.44 (m, 8H,
CH(CH3)2, CH2P), 1.91 (m, 4H, CH2P), 1.75 (s, 12H, CH3), 1.16
(m, 12H, CH(CH3)2), 1.03 (m, 12H, CH(CH3)2), 0.1–(−0.58) (m,
40H, CH2Si, CH3Si); C(CD2Cl2): 156.3 (s, py(C)), 134.7–128.1
(m, C6H5), 125.0 (s, py(C)), 90.9, 89.3, 86.2, 85.2 (m, C6H4), 30.6
(s, CH(CH3)2), 21.8, 20.9 (s, CH(CH3)2), 17.4 (s, CH3), 15.0 (m,
CH2P), 8.6 (C2H2Si1), 2.2 (C1H2Si0), −2.6 (CH3Si1); Si(CD2Cl2):
2
9.2 (s, Si0), 4.6 (d, J(SiP) = 14.7 Hz, Si1); P(CD2Cl2): 32.1 (s,
3
3
−
PPh2Au), 25.5 (s, PPh2Ru), −144.4 (sep, PF6 ). IR: max/cm−1 (CN)
(d, 4H, J(HH) = 6 Hz, C6H4(A′)), 5.28 (d, 4H, J(HH) = 6 Hz,
3
C6H4(A)), 5.25 (d, 4H, J(HH) = 6 Hz, C6H4(B′)), 5.18 (d, 4H,
1628, 1603 (KBr).
3J(HH) = 6 Hz, C6H4 (B)), 2.34 (d, 4H, 2J(HP) = 15 Hz, CHaHbP),
2.30 (sep, 4H, 3J(HH) = 7 Hz, CH(CH3)2), 1.76 (s, 12H, CH3), 1.73
[RuCl(p-cymene)(PMePh2)(py)][PF6]. Experimental condi-
tions and workup were identical to those for the preparation of
1[Ru(bipy)]44+. (97 mg, 94%). H(CDCl3): 8.76 (m, 2H, py(H)),
7.48–7.20 (m, 13H, C6H5, py(H), py(H)), 5.76 (dd, 1H,
3J(HH) = 6 Hz, J = 1.2 Hz, C6H4(A′)), 5.65 (d, 1H, 3J(HH) = 6 Hz,
3
(m, 4H, CHaHbP), 1.10 (d, 12H, J(HH) = 7 Hz, CH(CH3)2), 0.99
(d, 12H, 3J(HH) = 7 Hz, CH(CH3)2), −0.17 (m, CH2Si), −0.24 (m,
CH2Si), −0.40 (s, CH3Si), −0.60 (s, CH3Si) (40H); C(CD2Cl2):
156.8 (s, bipy(C)), 151.1 (s, bipy(C′)), 148.2 (s, bipy(C)),
143.1 (s, bipy(C′)), 132.7–132.5 (m, o-, o′-C6H5), 132.0, 130.9
(s, p-, p′-C6H5), 129.6 (m, m-C6H5), 128.6 (m, m′-C6H5), 123.3
(s, bipy(C)), 121.4 (s, bipy(C′)), 110.4 (s, C–CH(CH3)2),
100.4 (s, C–CH3), 91.7 (s, C6H4 (B)), 90.4 (s, C6H4 (A′)), 89.1
(s, C6H4 (B′)), 88.0 (C6H4 (A)), 30.7 (s, CH(CH3)2), 22.1, 21.8 (s,
CH(CH3)2), 17.6 (s, CH3), 12.45 (d, 1J(CP) = 25.4 Hz, CH2P), 8.8
(s, C2H2Si1), 2.3 (s, C1H2Si0), −2.1, −2.5 (s, CH3Si1); Si(CD2Cl2):
9.2 (s, Si0), 4.5 (m, Si1); P(CD2Cl2): 25.2 (s, PPh2), −144.2 (sep,
3
C6H4(A)), 5.61 (d, 1H, J(HH) = 6 Hz, C6H4(B′)), 5.44 (d, 1H,
3J(HH) = 6 Hz, C6H4(B)), 2.30 (sep, 1H, 3J(HH) = 6.9 Hz,
2
CH(CH3)2), 2.17 (d, 3H, J(HP) = 9.9 Hz, CH3P), 1.72 (s, 3H,
CH3), 1.11 (d, 3H, 3J(HH) = 6.9 Hz, CH(CH3)2), 1.00 (d, 3H,
3J(HH) = 6.9 Hz, CH(CH3)2); C(CDCl3): 155.8 (s, py(C)),
138.7 (s, py(C)), 132.1 (pt, 2J(CP) = 9.3 Hz, o-C6H5), 131.4,
131.0 (s, p-, p′-C6H5), 129.2 (d, 3J(CP) = 10.1 Hz, m-C6H5),
3
128.8 (d, J(CP) = 10.8 Hz, m′-C6H5), 126.1 (s, py(C)), 112.2
−
PF6 ). MS (ES+): m/z = 1583.2 [M − 2PF6]2+, 1505.8 [M − 2PF6-
2
(d, J(CP) = 4.7 Hz, C–CH(CH3)2), 103.6 (s, C–CH3), 91.4, 90.1,
bipy]2+, 1426.8 [M − 2PF6-2bipy]2+, 1008.6 [M − 3PF6]2+, 956.6
[M − 3PF6-bipy]3+, 904.1 [M − 3PF6-2bipy]3+. IR: max/cm−1 (CN)
1613, 1595 (KBr).
88.5, 85.9 (s, C6H4), 30.9 (s, CH(CH3)2), 22.3, 22.2 (s, CH(CH3)2),
1
18.0 (s, CH3), 14.0 (d, J(CP) = 34.7 Hz, CH3P); P(CDCl3): 16.8
−
(s, PPh2), −144.2 (sep, PF6 ). MS (ES+): 550.8 [M − PF6]+. IR:
max/cm−1 (CN) 1602 (KBr).
[Si0(C1H2C2H2Si1(CH3)2CH2PPh2RuCl(p-cymene)(py))4]-
[PF6]4 (1[Ru(py)]44+). Experimental conditions and workup were
4+
Syntheses of 1[Ru(bipy)Rh]4 and 1[Ru(bipy)Ru]44+. The
4+
identical to those for the preparation of 1[Ru(bipy)]4 (55 mg,
4+
dendrimer 1[Ru(bipy)]4 (12 mg, 3.5 mol) was solved in 2 ml
of acetone-d6 and 2 mg (7 mol) of [RhCl(CO)2]2 or 4 mg (7 mol)
of [RuCl2(p-cymene)]2 was added. The reactions were monitored
by NMR.
76%). H(CD2Cl2): 8.65 (m, 8H, py(H)), 7.90–7.11 (m, 52H, C6H5,
py(H), py(H)), 5.33–5.19 (m, 16H, C6H4), 2.23 (m, 8H, CH(CH3)2,
CHaHbP), 1.78 (m, 4H, CHaHbP), 1.72 (s, 12H, CH3), 1.09 (d, 12H,
3J(HH) = 6.8 Hz, CH(CH3)2), 0.96 (d, 12H, 3J(HH) = 6.8 Hz,
CH(CH3)2), −0.1–(−0.58) (m, 40H, CH2Si, CH3Si); C(CD2Cl2):
156.2 (s, py(C)), 139.0 (s, py(C)), 132.8–132.4 (m, o-, o′-C6H5),
1[Ru(bipy)]44+. H(acetone-d6): 8.92 (d, 8H, 3J(HH) = 5.9 Hz,
bipy(H)), 8.76 (m, 8H, bipy(H′)), 8.15–7.13 (m, 56H,
C6H5, bipy(H), bipy(H′)), 5.75 (d, 3J(HH) = 6 Hz), 5.61 (d,
3
131.9, 131.1 (s, p-, p′-C6H5), 129.5 (d, J(CP) = 9.6 Hz, m-C6H5),
3
128.6 (d, J(CP) = 9.6 Hz, m′-C6H5), 125.9 (s, py (C)), 110.7 (s,
3
3
3J(HH) = 6 Hz), 5.47 (d, J(HH) = 6 Hz), 5.34 (d, J(HH) = 6 Hz)
C–CH(CH3)2), 100.1 (s, C–CH3), 92.0, 90.2, 88.5, 87.8 (m, C6H4),
30.7 (s, CH(CH3)2), 22.0, 21.8 (s, CH(CH3)2), 17.5 (s, CH3), 12.1
(m, CH2P), 8.8 (s, C2H2Si1), 2.3 (s, C1H2Si0), −2.2, −2.5 (s, CH3Si1);
Si(CD2Cl2): 9.2 (s, Si0), 4.4 (d, 2J(SiP) = 14.2 Hz, Si1); P(CD2Cl2):
25.2 (s, PPh2), −144.2 (sep, PF6−). MS (ES+): 1429.7 [M − 2PF6]2+,
906.0 [M − 3PF6]3+. IR: max/cm−1 (CN) 1603 (KBr).
(16H, C6H4), 2.41 (m, 8H, CH(CH3)2, CHaHbP), 1.83 (s, 12H,
3
3
CH3), 1.14 (d, J(HH) = 6.8 Hz), 1.02 (d, J(HH) = 6.8 Hz) (24H,
CH(CH3)2), 0.1–(−0.52) (m, 40H, CH2Si, CH3Si); P(acetone-d6):
25.2 (s, PPh2Ru), −144.1 (sep, PF6). IR: max/cm−1 (CN) 1613,
1595 (KBr).
3
1[Ru(bipy)Rh]44+. H(acetone-d6): 8.97 (d, 8H, J(HH) = 5 Hz,
[Si0(C1H2C2H2Si1(CH3)2CH2PPh2RuCl(4-CNpy)(p-cymene))4]-
bipy(H)), 8.85 (m, 8H, bipy(H′)), 8.14–7.13 (m, 56H,
[PF6]4 (1[Ru(CNpy)]44+). Experimental conditions and workup
4+
C6H5, bipy(H), bipy(H′)), 5.75 (d, 3J(HH) = 6 Hz), 5.61 (d,
were identical to those for the preparation of 1[Ru(bipy)]4
.
3
3
3J(HH) = 6 Hz), 5.47 (d, J(HH) = 6 Hz), 5.34 (d, J(HH) = 6 Hz)
(76 mg, 71%). H(CD2Cl2): 8.76 (m, 8H, CNpy(H)), 7.70–7.14
(m, 48H, C6H5, CNpy(H)), 5.39–5.24 (m, 16H, C6H4), 2.22
(m, 8H, CH(CH3)2, CHaHbP), 1.82 (m, 4H, CHaHbP), 1.75 (s,
(16H, C6H4), 2.41 (m, 8H, CH(CH3)2, CHaHbP), 1.83 (s, 12H,
3
3
CH3), 1.14 (d, J(HH) = 6.8 Hz), 1.02 (d, J(HH) = 6.8 Hz) (24H,
CH(CH3)2), 0.1–(−0.52) (m, 40H, CH2Si, CH3Si); P(acetone-d6):
25.4 (s, PPh2Ru), −144.1 (sept, PF6). IR: max/cm−1 (CO) 2088,
2010, (CN) 1609 (KBr).
3
12H, CH3), 1.08 (d, 12H, J(HH) = 6.8 Hz, CH(CH3)2), 0.98 (d,
12H, 3J(HH) = 6.8 Hz, CH(CH3)2), −0.16 (m, CH2Si), −0.38 (s,
CH3Si), −0.57 (s, CH3Si) (40H); C(CD2Cl2): 157.0 (s, CNpy(C)),
132.8 (m, o-, o′-C6H5), 132.2, 131.4 (s, p-, p′-C6H5), 129.8 (m,
m-C6H5), 129.0 (m, m′-C6H5), 123.3 (s, CNpy(C)), 121.1 (s,
CNpy(C)), 110.8 (s, C–CH(CH3)2), 100.6 (s, C–CH3), 92.2,
90.5, 89.0, 88.5 (m, C6H4), 30.9 (s, CH(CH3)2), 22.3, 21.9 (s,
CH(CH3)2), 17.8 (s, CH3), 12.4 (m, CH2P), 9.0 (m, C2H2Si1),
2.5 (m, C1H2Si0), −1.9, −2.3 (s, CH3Si1); Si(CD2Cl2): 3.4 (d,
1[Ru(bipy)Ru]44+. H(acetone-d6): 8.84 (m, 8H, bipy(H)), 9.31
(m, 8H, bipy(H′)), 8.15–7.13 (m, 56H, C6H5, bipy(H), bipy(H′)),
5.7–5.4 (m, 32H, C6H4), 3.05 (m, 4H, CH(CH3)2), 2.41 (m, 8H,
CH(CH3)2, CHaHbP), 2.13 (s, 12H, CH3), 1.80 (s, 12H, CH3),
1.37 (m, 24H, CH(CH3)2), 1.14 (m), 1.02 (m) (24H, CH(CH3)2),
2 4 5 6
D a l t o n T r a n s . , 2 0 0 4 , 2 4 5 0 – 2 4 5 7