Page 9 of 10
The Journal of Organic Chemistry
(16) Piehl, P.; Peña-López, M.; Frey, A.; Neumann, H.; Beller, M.
(39) Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Diskin-Posner, Y.; Ben-
David, Y.; Milstein, D. Synthesis of Pyrazines and Quinoxalines via
Acceptorless Dehydrogenative Coupling Routes Catalyzed by Manganese
Pincer Complexes. ACS Catal. 2018, 8, 7734-7741.
Hydrogen autotransfer and related dehydrogenative coupling reactions
using a rhenium(i) pincer catalyst. Chem. Commun. 2017, 53, 3265-3268.
(17) Gunanathan, C.; Milstein, D. Applications of acceptorless
dehydrogenation and related transformations in chemical synthesis. Science
2013, 341, 1229712.
(18) Das, U. K.; Ben-David, Y.; Diskin-Posner, Y.; Milstein, D. N-
Substituted hydrazones by manganese-catalyzed coupling of alcohols with
hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in one
system. Angew. Chem. Int. Ed. 2018, 130, 2201-2204.
(19) Daw, P.; Ben-David, Y.; Milstein, D. Acceptorless Dehydrogenative
Coupling Using Ammonia: Direct Synthesis of N-Heteroaromatics from
Diols Catalyzed by Ruthenium. J. Am. Chem. Soc. 2018, 140, 11931-11934.
(20) Blank, B.; Kempe, R. Catalytic Alkylation of Methyl-N-
Heteroaromatics with Alcohols. J. Am. Chem. Soc. 2010, 132, 924-925.
(21) Michlik, S.; Kempe, R. A sustainable catalytic pyrrole synthesis. Nat.
Chem. 2013, 5, 140.
(22) Deibl, N.; Kempe, R. Manganese-Catalyzed Multicomponent
Synthesis of Pyrimidines from Alcohols and Amidines. Angew. Chem. Int.
Ed. 2017, 56, 1663-1666.
(23) Corma, A.; Navas, J.; Sabater, M. J. Advances in One-Pot Synthesis
through Borrowing Hydrogen Catalysis. Chem. Rev. 2018, 118, 1410-1459.
(24) Reed-Berendt, B. G.; Polidano, K.; Morrill, L. C. Recent advances in
homogeneous borrowing hydrogen catalysis using earth-abundant first row
transition metals. Org. Biomol. Chem. 2019, 17, 1595-1607.
(25) Leonard, J.; Blacker, A. J.; Marsden, S. P.; Jones, M. F.; Mulholland,
K. R.; Newton, R. A Survey of the Borrowing Hydrogen Approach to the
Synthesis of some Pharmaceutically Relevant Intermediates. Org. Process
Res. Dev. 2015, 19, 1400-1410.
(26) Das, S.; Mallick, S.; De Sarkar, S. Cobalt-Catalyzed Sustainable
Synthesis of Benzimidazoles by Redox-Economical Coupling of o-
Nitroanilines and Alcohols. J. Org. Chem. 2019, 84, 12111-12119.
(27) Moorthy, N. S. H. N.; Manivannan, E.; Karthikeyan, C.; Piyush, T. 6H-
Indolo[2,3-b]Quinoxalines: DNA and Protein Interacting Scaffold for
Pharmacological Activities. Mini Rev. Med. Chem. 2013, 13, 1415-1420.
(28) Smits, R. A.; Lim, H. D.; Hanzer, A.; Zuiderveld, O. P.; Guaita, E.;
Adami, M.; Coruzzi, G.; Leurs, R.; de Esch, I. J. P. Fragment Based Design
of New H4 Receptor−Ligands with Anti-inflammatory Properties in Vivo.
J. Med. Chem. 2008, 51, 2457-2467.
1
2
3
4
5
6
7
8
(40) Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Cobalt complex catalyzed
atom-economical synthesis of quinoxaline, quinoline and 2-
alkylaminoquinoline derivatives. Chem. Commun. 2018, 54, 6883-6886.
(41) Das, K.; Mondal, A.; Srimani, D. Phosphine free Mn-complex
catalysed dehydrogenative C–C and C–heteroatom bond formation: a
sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole
and quinoline derivatives. Chem. Commun. 2018, 54, 10582-10585.
(42) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Sodium Sulfide: A
Sustainable Solution for Unbalanced Redox Condensation Reaction
between o-Nitroanilines and Alcohols Catalyzed by an Iron–Sulfur System.
Synthesis 2015, 47, 1741-1748.
(43) Bera, A.; Sk, M.; Singh, K.; Banerjee, D. Nickel-catalysed
dehydrogenative coupling of aromatic diamines with alcohols: selective
synthesis of substituted benzimidazoles and quinoxalines. Chem. Commun.
2019, 55, 5958-5961.
(44) Yang, P.; Zhang, C.; Gao, W.-C.; Ma, Y.; Wang, X.; Zhang, L.; Yue,
J.; Tang, B. Nickel-catalyzed borrowing hydrogen annulations: access to
diversified N-heterocycles. Chem. Commun. 2019, 55, 7844-7847.
(45) Irrgang, T.; Kempe, R. 3d-Metal Catalyzed N- and C-Alkylation
Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chem. Rev.
2019, 119, 2524-2549.
(46) Singh, K.; Kabadwal, L. M.; Bera, S.; Alanthadka, A.; Banerjee, D.
Nickel-Catalyzed Synthesis of N-Substituted Pyrroles Using Diols with
Aryl- and Alkylamines. J. Org. Chem. 2018, 83, 15406-15414.
(47) Midya, S. P.; Rana, J.; Pitchaimani, J.; Nandakumar, A.; Madhu, V.;
Balaraman, E. Ni-Catalyzed α-Alkylation of Unactivated Amides and
Esters with Alcohols by Hydrogen Auto-Transfer Strategy. ChemSusChem
2018, 11, 3911-3916.
(48) Arun, V.; Mahanty, K.; De Sarkar, S. Nickel-Catalyzed
Dehydrogenative Couplings. ChemCatChem, 2019, 11, 2243-2259.
(49) Singh, K.; Vellakkaran, M.; Banerjee, D. A nitrogen-ligated nickel-
catalyst enables selective intermolecular cyclisation of β- and γ-amino
alcohols with ketones: access to five and six-membered N-heterocycles.
Green Chem. 2018, 20, 2250-2256.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(50) Waiba, S.; Das, A.; Barman, M. K.; Maji, B. Base Metal-Catalyzed
Direct Olefinations of Alcohols with Sulfones. ACS Omega 2019, 4, 7082-
7087.
(29) Michael, J. P. Quinoline, quinazoline and acridone alkaloids. Nat.
Prod. Rep. 2002, 19, 742-760.
(30) Lindner, B. D.; Zhang, Y.; Höfle, S.; Berger, N.; Teusch, C.; Jesper,
M.; Hardcastle, K. I.; Qian, X.; Lemmer, U.; Colsmann, A.; Bunz, U. H. F.;
Hamburger, M. N-Fused quinoxalines and benzoquinoxalines as attractive
emitters for organic light emitting diodes. J. Mater. Chem. C 2013, 1, 5718-
5724.
(31) Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L.
Synthesis and device characterisation of side-chain polymer electron
transport materials for organic semiconductor applications. J. Mater. Chem.
2001, 11, 2238-2243.
(32) Kumar, A.; kumar, S.; Saxena, A.; De, A.; Mozumdar, S. Ni-
nanoparticles: An efficient catalyst for the synthesis of quinoxalines. Catal.
Commun. 2008, 9, 778-784.
(33) Rajabi, F.; Alves, D.; Luque, R. An Efficient and Recyclable
Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis.
Molecules 2015, 20, 20709-20718.
(34) Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X.
Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via
a ruthenium-catalyzed hydrogen transfer strategy. Green Chem. 2015, 17,
279-284.
(35) Climent, M. J.; Corma, A.; Hernández, J. C.; Hungría, A. B.; Iborra,
S.; Martínez-Silvestre, S. Biomass into chemicals: One-pot two- and three-
step synthesis of quinoxalines from biomass-derived glycols and 1,2-
dinitrobenzene derivatives using supported gold nanoparticles as catalysts.
J. Catal. 2012, 292, 118-129.
(36) Cho, C. S.; Oh, S. G. A new ruthenium-catalyzed approach for
quinoxalines from o-phenylenediamines and vicinal-diols. Tetrahedron
Lett. 2006, 47, 5633-5636.
(37) Hille, T.; Irrgang, T.; Kempe, R. The Synthesis of Benzimidazoles and
Quinoxalines from Aromatic Diamines and Alcohols by Iridium-Catalyzed
Acceptorless Dehydrogenative Alkylation. Chem. Eur. J. 2014, 20, 5569-
5572.
(51) Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee,
S.; Paul, N. D. Dehydrogenative Synthesis of Quinolines, 2-
Aminoquinolines, and Quinazolines Using Singlet Diradical Ni(II)-
Catalysts. J. Org. Chem. 2019, 84, 2626-2641.
(52) Zhang, Y.; Pang, S.; Wei, Z.; Jiao, H.; Dai, X.; Wang, H.; Shi, F.
Synthesis of a molecularly defined single-active site heterogeneous catalyst
for selective oxidation of N-heterocycles. Nat. Commun. 2018, 9, 1465.
(53) Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging
homogeneous and heterogeneous catalysis by heterogeneous single-metal-
site catalysts. Nature Catal. 2018, 1, 385-397.
(54) Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From
Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118,
4981-5079.
(55) Copéret, C.; Chabanas, M.; Petroff Saint-Arroman, R.; Basset, J.-M.
Homogeneous and Heterogeneous Catalysis: Bridging the Gap through
Surface Organometallic Chemistry. Angew. Chem. Int. Ed. 2003, 42, 156-
181.
(56) Ye, R.; Hurlburt, T. J.; Sabyrov, K.; Alayoglu, S.; Somorjai, G. A.
Molecular catalysis science: Perspective on unifying the fields of catalysis.
Proc. Natl. Acad. Sci. 2016, 113, 5159.
(57) Chakrabarti, K.; Maji, M.; Kundu, S. Cooperative iridium complex-
catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in
water. Green Chem. 2019, 21, 1990-2004.
(58) Shahi, C., K.; Pradhan, S.; Bhattacharyya, A.; Kumar, R.; Ghorai, M.
K.
Accessing
Quinoxalines
by
Ring-
Opening/Cyclization/Detosylation/Aromatization of Activated Aziridines
with 2-Bromoanilines: Synthesis of Tyrphostin AG 1296. Eur. J. Org.
Chem. 2017, 2017, 3487-3495.
(59) Omar Ali Tahir, M. U., Sajjad Ahmad, Humaira Kousar, Ali Irfan. A
Review on Biological Studies of Quinoxaline Derivatives. World J. Pharm.
Pharm. Sci. 2017, 6, 11-30.
(60) Duff, E. J. Complexes of the benzenediamines. Part I. Some complexes
of cobalt(II), nickel(II), and copper(II) with benzene-1,2-diamine. J. Chem.
Soc. A 1968, 434-437.
(38) Shi, D.-Q.; Dou, G.-L. Efficient Synthesis of Quinoxaline Derivatives
Catalyzed by p-Toluenesulfonic Acid Under Solvent-Free Conditions.
Synth. Commun. 2008, 38, 3329-3337.
ACS Paragon Plus Environment