group has been shown to have significantly higher activity
than that of the parent Grubbs catalyst.3b,8
Scheme 1. Synthesis of Baylis-Hillman Adducts
Recently, we synthesized 2,5-dihydrofuran and 2,5-dihy-
dropyrrole skeleta from the Baylis-Hillman adducts of 5,6-
dihydro-2H-pyran-2-one via the RCM reaction using the
Grubbs second-generation catalyst.9 The latter catalyst has
also been successfully used to synthesize di-, tri-, and
tetrasubstituted R,â-unsaturated lactones or lactams of ring
size 5-7.10 There have been several theoretical3,7,11 and
experimental11-13 attempts to explain the mechanism and
activity of olefin metathesis with the Grubbs catalyst and
its derivatives. Most of the theoretical studies have been
carried out on simplified model systems. However, the size
of the ligands, their electronic properties, and conformational
flexibility are reported to greatly influence the catalytic
reactivity.13a,14 In this letter, we report a synthetic and
theoretical study of the olefin metathesis of two Baylis-
Hillman adducts 3a and 3b using the second-generation
Grubbs catalyst.
in acetonitrile, we were able to synthesize the starting
materials 3a and 3b in moderate yield (Scheme 1). (For the
detailed synthesis and spectroscopic data of prepared com-
pounds, see Supporting Information.)
Scheme 2. Possible Products of Olefin Metathesis
We prepared the required starting materials 3a and 3b as
shown in Scheme 1. The Baylis-Hillman adduct 1 was
converted into the acid 2 according to the reported method,15
and following esterification with 12a and 12b using DBU
(5) (a) Choi, J. H.; Kim, N.; Shin, Y. J.; Park, J. H.; Park, J. Tetrahedron
Lett. 2004, 45, 4607. (b) Choi, J. H.; Choi, Y. K.; Kim, Y. H.; Park, E. S.;
Kim, E. J.; Kim, M.-J.; Park, J. J. Org. Chem. 2004, 69, 1972. (c) Kim,
M.-J.; Chung, Y. I.; Choi, Y. K.; Lee, H. K.; Kim, D.; Park, J. J. Am.
Chem. Soc. 2003, 125, 11494. (d) Hinderling, C.; Adlhart, C.; Chen, P.
Angew. Chem., Int. Ed. 1998, 37, 2685. (e) Huang, X.; Lin, Z. Organo-
metallics 2003, 22, 5478. (f) Yin, C.; Xu, Z.; Yang, S.-Y.; Ng, S. M.; Wong,
K. Y.; Lin, Z.; Lau, C. P. Organometallics 2001, 20, 1216. (g) Wong, W.-
Y.; Ting, F.-L.; Lin, Z. Organometallics 2003, 22, 5100. (h) Fung, W. K.;
Huang, X.; Man, M. L.; Ng, S. M.; Hung, M. Y.; Lin, Z.; Lau, C. P. J. Am.
Chem. Soc. 2003, 125, 11539.
(6) (a) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J.
Am. Chem. Soc. 1992, 114, 3974. (b) Nguyen, S. T.; Grubbs, R. H.; Ziller,
J. W. J. Am. Chem. Soc. 1993, 115, 9858. (c) Schwab, P.; France, M. B.;
Ziller, J. W.; Grubbs, R. H. Angew. Chem. 1995, 107, 2179; Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2039. (d) Wu, Z.; Nguyen, S. T.; Grubbs, R. H.;
Ziller, J. W. J. Am. Chem. Soc. 1995, 117, 5503. (e) Schwab, P.; Grubbs,
R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
With compounds 3a and 3b in hand, we examined their
RCM reactions with 4 under high-dilution conditions in order
to minimize the intermolecular reactions. Initially, we carried
out the reaction of 3a in toluene with 14 mol % catalyst 4 at
70-80 °C for 40 h. Unfortunately, however, we could never
detect or isolate the desired RCM product. Instead, the cross-
metathesis products 10a (8%) and 11a (46%) were isolated
along with recovered starting material 3a (27%).
When we performed the same reaction with 3b, similar
results were obtained. The starting material 3b was recovered
in 45% yield, benzaldehyde in about 40% yield, and the CM
product 11b in 11% yield. Although similar approaches have
been successful for the synthesis of five- or six-membered
lactones using the RCM reaction has been reported using
(PCy3)2Cl2RudCHPh10b or (IMes)(PCy3)Cl2RudCHPh,10a
our experiments failed to produce the desired RCM products.
During the reaction, we monitored the reaction frequently
using TLC to detect the formation of any trace of the RCM
product 9a. The reference sample of 9a was prepared by
the Baylis-Hillman reaction of benzaldehyde and lactone
(5,6-dihydro-2H-pyran-2-one) derivative according to the
(7) Aagaard, O. M.; Meier, R. J.; Buda, F. J. Am. Chem. Soc. 1998,
120, 7174.
(8) (a) Huang, J.; Schanz, H.-J.; Stevens, E. D.; Nolan, S. P. Organo-
metallics 1999, 18, 5375. (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R.
H. Org. Lett. 1999, 1, 953. (c) Chatterjee, A. K.; Grubbs, R. H. Org. Lett.
1999, 1, 1751. (d) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R.
H. J. Am. Chem. Soc. 2000, 122, 3783. (e) Ackermann, L.; Furstner, A.;
Weskamp, T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron Lett. 1999, 40,
4787. (f) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron
Lett. 1999, 40, 2247.
(9) Kim, J. M.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron Lett. 2004,
45, 2805.
(10) (a) Furstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan,
S. P. J. Org. Chem. 2000, 65, 2204. (b) Anand, R. V.; Baktharaman, S.;
Singh, V. K. Tetrahedron Lett. 2002, 43, 5393. (c) Gruttadauria, M.; Meo,
P. L.; Noto, R. Tetrahedron Lett. 2004, 45, 83.
(11) Adlhart, C.; Hinderling, C.; Baumann, H.; Chen, P. J. Am. Chem.
Soc. 2000, 122, 8204.
(12) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997,
119, 3887.
(13) (a) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc.
2001, 123, 6543. (b) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm,
T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 2546. (c) Sanford, M. S.; Ulman, M.; Grubbs, R. H.
J. Am. Chem. Soc. 2001, 123, 749. (d) Hong, S. H.; Day, M. W.; Grubbs,
R. H. J. Am. Chem. Soc. 2004, 126, 7414. (e) Ulman, M.; Grubbs, R. H.
Organometallics 1998, 17, 2484. (f) Ulman, M.; Grubbs, R. H. J. Org.
Chem. 1999, 64, 7202.
(15) (a) Martinez, I.; Andrews, A. E.; Emch, J. D.; Ndakala, A. J.; Wang,
J.; Howell, A. R. Org. Lett. 2003, 5, 399. (b) Krishna, P. R.; Kannan, V.;
Ilangovan, A.; Sharma, G. V. M. Tetrahedron: Asymmetry 2001, 12, 829.
(14) Love, J. A.; Sanford, M. S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 10103.
3314
Org. Lett., Vol. 6, No. 19, 2004