Journal of the American Chemical Society
Article
NMR signal at 6.3 ppm.28 Aliquots of 0.1 mL were taken from the 4
mL reaction mixture and mixed with 0.7 mL of deuterated methanol
for NMR analysis. The typical sampling frequency was around 10−20
min. Similar procedures were adopted for other reactions shown in
Figure 9.
COMSOL Simulation. Simulations were carried out with the
COMSOL (Multiphysics Version 4.2a) software package. The plug
flow module was used under either transient or steady state conditions
with first-order reaction kinetics for MVK. The relationship between
the potential applied and the corresponding reaction rate constant was
determined experimentally (see Figure 5c). The total mass of the
catalyst (1700 kg), or the size of the reactor (10 m in length and 1 m
in diameter), was chosen such that when the catalyst was fully oxidized
(fixed at a potential of 0.8 V), the concentration of MVK decayed to
zero at the outlet. The mass of the catalyst and the volume of the
reactor were correlated from the density of the PVF/CF catalyst.
There were approximately 40 000 sheets in the tube reactor. Details
for the COMSOL simulation are shown in SI Section S3.
(14) Vilekar, S. A.; Fishtik, I.; Datta, R. Chem. Eng. Sci. 2010, 65,
2921−2933.
(15) Renken, A.; Kiwi-Minsker, L. Adv. Catal. 2010, 53, 47−122.
(16) Reyes, D. R.; Iossifidis, D.; Auroux, P. A.; Manz, A. Anal. Chem.
2002, 74, 2623−2636.
(17) Auroux, P. A.; Iossifidis, D.; Reyes, D. R.; Manz, A. Anal. Chem.
2002, 74, 2637−2652.
(18) Wiles, C.; Watts, P. Green Chem. 2012, 14, 38−54.
(19) Stoll, R. S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054−
5075.
(20) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005,
44, 7852−7872.
(21) Gross, E.; Liu, J. H. C.; Toste, F. D.; Somorjai, G. A. Nat. Chem.
2012, 4, 947−952.
(22) Fogler, H. S. Elements of Chemical Reaction Engineering, 4th ed.;
Prentice Hall PTR: Upper Saddle River, NJ, 2006.
(23) Broderick, E. M.; Guo, N.; Vogel, C. S.; Xu, C. L.; Sutter, J.;
Miller, J. T.; Meyer, K.; Mehrkhodavandi, P.; Diaconescu, P. L. J. Am.
Chem. Soc. 2011, 133, 9278−9281.
ASSOCIATED CONTENT
* Supporting Information
(24) Broderick, E. M.; Guo, N.; Wu, T. P.; Vogel, C. S.; Xu, C. L.;
Sutter, J.; Miller, J. T.; Meyer, K.; Cantat, T.; Diaconescu, P. L. Chem.
Commun. 2011, 47, 9897−9899.
(25) Gregson, C. K. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.;
Oxford, P. J.; White, A. J. P. J. Am. Chem. Soc. 2006, 128, 7410−7411.
(26) Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37,
894−908.
(27) Lorkovic, I. M.; Duff, R. R.; Wrighton, M. S. J. Am. Chem. Soc.
1995, 117, 3617−3618.
(28) Durkee, D. A.; Eitouni, H. B.; Gomez, E. D.; Ellsworth, M. W.;
Bell, A. T.; Balsara, N. R. Adv. Mater. 2005, 17, 2003−2006.
(29) Glowacki, D. R.; Harvey, J. N.; Mulholland, A. J. Nat. Chem.
2012, 4, 169−176.
■
S
Scaling analysis of the reactant transport process, details of the
RPE simulation, details of the COMSOL simulation, and
supplementary figures. This material is available free of charge
AUTHOR INFORMATION
■
Corresponding Authors
Notes
(30) Abou Hamdan, A.; Dementin, S.; Liebgott, P. P.; Gutierrez-
Sanz, O.; Richaud, P.; De Lacey, A. L.; Roussett, M.; Bertrand, P.;
Cournac, L.; Leger, C. J. Am. Chem. Soc. 2012, 134, 8368−8371.
(31) Mao, X.; Simeon, F.; Rutledge, G. C.; Hatton, T. A. Adv. Mater.
2013, 25, 1309−1314.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We acknowledge the MITEI Seed Fund Grant for financial
support.
■
(32) Mao, X.; Hatton, T. A.; Rutledge, G. C. Curr. Org. Chem. 2013,
17, 1390−1401.
(33) Mao, X.; Rutledge, G. C.; Hatton, T. A. Langmuir 2013, 29,
9626−9634.
REFERENCES
■
(1) Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.;
Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.;
Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9,
101−113.
(2) Mura, S.; Nicolas, J.; Couvreur, P. Nat. Mater. 2013, 12, 991−
1003.
(34) Akhoury, A.; Bromberg, L.; Hatton, T. A. ACS Appl. Mater.
Interfaces 2011, 3, 1167−1174.
(35) Mao, X.; Simeon, F.; Achilleos, D. S.; Rutledge, G. C.; Hatton,
T. A. J. Mater. Chem. A 2013, 1, 13120−13127.
(36) Jung, M. E. Comprehensive Organic Synthesis, Vol. 4; Pergamon:
Oxford, UK, 1991.
(3) Fleischmann, E. K.; Zentel, R. Angew. Chem., Int. Ed. 2013, 52,
8810−8827.
(37) Corma, A.; Garcia, H. Chem. Rev. 2003, 103, 4307−4365.
(38) Sikes, H. D.; Smalley, J. F.; Dudek, S. P.; Cook, A. R.; Newton,
M. D.; Chidsey, C. E. D.; Feldberg, S. W. Science 2001, 291, 1519−
1523.
(39) Christoffers, J. Chem. Commun. 1997, 943−944.
(40) Mao, X.; Rutledge, G. C.; Hatton, T. A. Nano Today 2014, 9,
405−432.
(41) Chen, W.; Fan, Z. L.; Gu, L.; Bao, X. H.; Wang, C. L. Chem.
Commun. 2010, 46, 3905−3907.
(4) Doring, A.; Birnbaum, W.; Kuckling, D. Chem. Soc. Rev. 2013, 42,
7391−7420.
(5) Wiese, S.; Spiess, A. C.; Richtering, W. Angew. Chem., Int. Ed.
2013, 52, 576−579.
(6) He, X. M.; Aizenberg, M.; Kuksenok, O.; Zarzar, L. D.; Shastri,
A.; Balazs, A. C.; Aizenberg, J. Nature 2012, 487, 214−218.
(7) Rodríguez-Llansola, F.; Escuder, B.; Miravet, J. F. J. Am. Chem.
Soc. 2009, 131, 11478−11484.
(8) Wang, Y.; Zhang, J. Z.; Zhang, W. Q.; Zhang, M. C. J. Org. Chem.
2009, 74, 1923−1931.
(9) Lu, Y.; Yuan, J. Y.; Polzer, F.; Drechsler, M.; Preussners, J. ACS
Nano 2010, 4, 7078−7086.
(10) Wang, G. Q.; Kuroda, K.; Enoki, T.; Grosberg, A.; Masamune,
S.; Oya, T.; Takeoka, Y.; Tanaka, T. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 9861−9864.
(11) Bard, A. J.; Faulkner, L. R.: Electrochemical methods:
fundamentals and applications, 2nd ed.; Wiley: New York, 2001.
(12) Newman, S. G.; Jensen, K. F. Green Chem. 2013, 15, 1456−
1472.
(13) Yoshida, J. I.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331−
340.
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX