pentane into an acetone solution of the complex. An ORTEP view
of the structure of 2 appears in Fig. 3. The structure comprises
two pseudooctahedral rhenium carbonyl centres bridged by thione
sulfurs.TheRe–Redistanceof3.64Åandtheformalvalenceelectron
count suggest there is no Re–Re bonding. The bond distances within
the doubly deprotonated SHYNICH ligand are consistent with it
bearing a dinegative charge. This is partially compensated by the
uncoordinated pyridyl nitrogen bearing a proton, with an overall
neutral charge on the complex. The delocalized SHYNICH ligand
is essentially planar, and this precludes coordination to the three
non-carbonyl coordinated facially disposed sites on the Re(CO)3
core. Under the dilute conditions used for radiopharmaceutical syn-
thesis it is likely that a solvated monomeric species will be formed.
Acknowledgements
We are grateful to the EPSRC for financial support of P.S.D. and to
Hermann Starck GmBH for the generous gift of rhenium metal.
Notes and references
† [ReBr3(CO)3][NEt4]2 (0.05 g, 0.07 mmol) and [4-EtCO2C6H4N2][BF4]
(0.02 g, 0.07 mmol) were dissolved CH2Cl2 (40 mL). The orange mix-
ture was stirred at reflux under an atmosphere of nitrogen for 4 h. The
mixture was allowed to cool to room temperature and the volume was
reduced in vacuo to about 2 mL. Diethyl ether was added to precipitate
[Et4N][ReBr3(N2C6H4-4CO2Et)(CO)2]
1 as an orange-brown powder
which was collected by filtration and washed with diethyl ether, (0.02 g,
1
0.02 mmol, 30%). H NMR (300 MHz) (d6-DMSO): 8.02, 2H, AA′ BB′
3
system, ArH; 7.53, 2H, AA′ BB′ system, ArH; 4.29, 2H, q JHH = 7 Hz,
O–CH2CH3; 3.10, 8H, q, JHH = 7 Hz, [N(CH2CH3)4]+; 1.29, 3H, t,
3
3JHH = 7 Hz, CH2CH3; 1.12, 12H, t, JHH = 7 Hz, [N(CH2CH3)4]+. ESMS
3
(−ve ion mode): m/z = 658 = [ReBr3(N2C6H4-4CO2Et)(CO)2]−, m/z = 632
(100%) = [ReBr3(N2C6H4-4CO2Et)(CO)]−. IR (KBr): NN = 1458,1491,
CO = 1916, 1988, 2066, Re–NN = 1719.
[Et4N]2[ReBr3(CO)3 (0.100 g, 0.13 mmol) was dissolved in CH3OH
(5 mL). SHYNICH3 (0.032 g, 0.13 mmol) was added and the yellow
reaction mixture was stirred at room temperature under an atmosphere
of nitrogen for 30 min. Addition of water resulted in the formation of a
green-yellow precipitate which was collected by filtration and washed with
water to give [(Re(PhNHCSNNpyH)(CO3)3)2] as a green-yellow powder,
(0.054 g, 0.05 mmol, 81%). (Found: C, 35.0; H, 2.74; N, 10.52; calc’d for
1
Re2C30H22N8O6S2: C, 35.08; H, 2.16; N, 10.91.) H NMR (300 MHz) (d6-
acetone): 11.22, 1H, s, HNC6H5; 8.4, 1H, s, PhNH; 7.78, 1H, m, ArH; 7.70,
2H, d, J = 9 Hz ArH, 7.53–7.25, 4H, m, 4H, 7.02, 1H, m, ArH; 6.39, 1H, m,
ArH. ESMS (−ve ion mode): m/z = 1025 (10%) = [Re2(C24H21N8S2)(CO)6]−,
m/z = 513 (100%) = [Re(C12H10N4S)(CO)3]−.
1 J. R. Dilworth and S. J. Parrott, J. Chem. Soc. Rev., 1999, 43.
2 W. A. Volkert and T. J. Hoffman, Chem. Rev., 1999, 99, 2269.
3 P. J. Blower and S. Prakash, Perspect. Bioinorg. Chem., 1999, 4, 91.
4 C. M. Archer, J. R. Dilworth, P. Jobanputra, R. M. Thompson,
M. McPartlin and W. Hiller, J. Chem. Soc., Dalton Trans., 1993, 897.
5 J. R. Dilworth, P. Jobanputra, R. M. Thompson, D. C. Povey, C. M.
Archer and D. Kelly, J. Chem. Soc., Dalton Trans., 1994, 1251.
6 M. J. Abrams, M. Juweid, C. I. tenKate, D. A. Schwartz, M. M. Hauser,
F. E. Gaul, A. J. Fuccello, R. H. Rubin, H. W. Strauss and A. J.
Fischman, J. Nucl. Med., 1990, 31, 2022.
7 S. Liu, D. S. Edwards, A. R. Harris, S. J. Heminway and J. A. Barrett,
Inorg. Chem., 1998, 38, 1326.
8 D. J. Rose, K. P. Maresca, T. Nicholson, A. Davison, A. G. Jones, J. W.
Babich, A. J. Fischman, W. Graham, J. R. D. DeBord and J. Zubieta,
Inorg. Chem., 1998, 37, 2701.
Fig. 3 Structure of complex (2) with atom labelling scheme and
hydrogen atoms omitted for clarity. Selected bond lengths (Å) and
angles (°): Re(1)–S(1) = 2.462(1), Re(1)–S(1)′ = 2.535(1), Re(1)–N(2) =
2.198(3), Re(1)–C(av) = 1.920(5), C(1)–S(1) = 1.790(4), C(1)–N(1) =
1.286(6), N(1)–N(2) =1.424(5). S(1)–Re(1)–S(1)′ = 82.35(1), Re(1)–
S(1)–Re(2) = 97.65(4), S(1)–Re(1)–N(2) = 76.6(1), C(13)–Re(1)–C(14) =
91.36(18).
The use of diazonium salts provides access to new anionic
diazenide derivatives of the Re(CO)3 core and bifunctionality is
available via carboxyl substituents on the diazenide aryl group.
Pryidylhydrazines with a thioamide tethering group react with
the same core to give dimeric thione-bridged complexes with an
unusual zwitterionic bidentate bonding mode for the pyridyldiazene
ligand. By analogy with the HYNIC system20,21 it is straightforward
to introduce an activated ester group in the pyridyl ring for target-
ing and this can be done without the use of protecting groups for the
hydrazine. This demonstrates that the HYNIC targeting strategy can
be adapted to lower oxidation state rhenium cores.
9 S. Liu, D. S. Edwards, A. R. Harris, S. J. Heminway and J. A. Barrett,
Inorg. Chem., 1999, 38, 1326.
10 S. Liu, A. R. Harris, N. E. Williams and D. S. Edwards, Bioconjugate
Chem., 2002, 13, 881.
11 S. Liu and D. S. Edwards, Chem. Rev., 1999, 99, 2235.
12 M. Gabriel, C. Decristoforo, E. Donnemiller, H. Ulmer, W. Rychlinski,
S. J. Mather and R. Moncayo, J. Nucl. Med., 2003, 44, 708.
13 K. Yokoyama, H. Tega, S. Kinuya, K. Hiramatsu, T. Konishi,
T. Micihigishi and N. Tonami, Eur. J. Nucl. Med., 1999, 26, P567.
14 S. Guhlke, M. Behe, M. Bangard, H. Bender, W. Pfeil, B. Rieck,
H. Mäcke and H. J. Bersack, Eur. J. Nucl. Med., 1999, 26, OS249.
15 R. Schibli, R. Schwarzbach, R. Alberto, K. Ortner, H. Schmalle,
C. Dumas, A. Egli and P. A. Schubiger, Bioconjugate Chem., 2002, 12,
750.
16 R. Alberto, R. Schibli, R. Waibel, U. Abram andA. P. Schubiger, Coord.
Chem. Rev., 1999, 190–192, 901.
17 R. Alberto, R. Schibli, A. P. Schubiger, U. Abram, H.-J. Pietzsch and
B. Johannsen, J. Am. Chem. Soc., 1999, 121, 6076.
18 R. Alberto, Eur. J. Nucl. Med. Mol. Imaging, 2003, 30, 1299.
19 A. R. Cowley, J. R. Dilworth and P. S. Donnelly, Inorg. Chem., 2003,
42, 929.
20 W. E. P. Greenland, K. Howland, J. Hardy, I. Fogelman and P. J. Blower,
J. Med. Chem., 2003, 46, 1751.
Crystal data for complexes (1) and (2)
For [Et4N][ReBr3(N2C6H4-4CO2Et)(CO)2], 1, C19H29Br3N3O4Re,
M = 789.37, triclinic, a = 10.3204(3), b = 10.7293(4), c =
11.9771(5), U = 1257.7 Å3, T = 150 K, space group
, Z = 2,
P1
(Mo-K) = 9.625 mm−1, 18254 reflections measured, 5492
unique, (R = 0.0478). The final wR was 0.0488.
For [Re2(C12H11N4S)2(CO)6]·2CH3COCH3, 2, C36H34N8O8Re2S2,
M = 1143.24, triclinic, a = 10.1017(2), b = 10.1665(2), c =
22.2480(4) Å, U = 1986.27(7) Å3, T = 150 K, space group P1,
Z = 2, (Mo-K) = 6.255 mm−1, 27687 reflections measured, 8953
unique (Rint = 0.043) The final wR was 0.0336. CCDC reference
b4/b407708c/ for crystallographic data in CIF or other electronic
format.
21 W. Guo, G. H. Hinkle and R. J. Lee, J. Nucl. Med., 1999, 40, 1563.
D a l t o n T r a n s . , 2 0 0 4 , 2 6 1 0 – 2 6 1 1
2 6 1 1