Crystal Growth & Design
Communication
(3) (a) Kitamura, M. Cryst. Growth Des. 2004, 4, 1153−1159.
(b) Weissbuch, I.; Torbeev, V. Y.; Leiserowitz, L.; Lahav, M. Angew.
Chem., Int. Ed. 2005, 44, 3226−3229. (c) Kelly, R. C.; Rodríguez-
Hornedo, N. Org. Process Res. Dev. 2009, 13, 1291−1300. (d) Price, C.
P.; Grzesiak, A. L.; Matzger, A. J. J. Am. Chem. Soc. 2005, 127, 5512−
5517. (e) Alvarez, A. J.; Singh, A.; Myerson, A. S. Cryst. Growth Des.
(Figure 4c). A comparison of the molecular geometry of 1 in all
four polymorphs shows that it is significantly affected by the
molecular environment and crystal packing.
In conclusion, we have obtained four crystal forms of 1 by a
conventional solvent-based crystallization method. Also,
compound 1 can be easily prepared by a relatively slow solid
state reaction. In that context, we were able to explore the
control of polymorphism in the solid state. We report the
important role of seed crystals in directing the supramolecular
organization of the product of the solvent-free reaction toward
the intended polymorphic outcome. To the best of our
knowledge, we have presented the first example of simulta-
neous solvent-free covalent synthesis and polymorphism
control of a single component system using mechanochemistry
via neat grinding and seeding-assisted grinding. The described
results are important for the understanding of solid state
reactivity and nucleation and can have a significant impact on
the future aspects of crystal engineering and polymorphism
control in the solid state. We are investigating the generality of
this method, and in principle, this approach may be used to
control the assembly of product molecules of other
condensation reactions in the solid state.
2009, 9, 4181−4188. (f) Uzarevic,
́
K.; Rubci
̌ ́ ́
c, M.; Đilovic, I.; Kokan,
̌
̌
Z.; Matkovic-
́
Calogovic,
́
D.; Cindric, M. Cryst. Growth Des. 2009, 9,
́
5327−5333. (g) Roelands, C. P. M; Jiang, S.; Kitamura, M.; ter Horst,
J. H.; Kramer, H. J. M.; Jansens, P. J. Cryst. Growth Des. 2006, 6, 955−
963.
(4) (a) Yu, L. J. Am. Chem. Soc. 2003, 125, 6380−6381. (b) Alberola,
A.; Clements, O. P.; Collis, R. J.; Cubbitt, L.; Grant, C. M.; Less, R. J.;
Oakley, R. T.; Rawson, J. M.; Reed, R. W.; Robertson, C. M. Cryst.
Growth Des. 2008, 8, 155−161. (c) Sarma, B.; Sanphui, P.; Nangia, A.
Cryst. Growth Des. 2010, 10, 2388−2399. (d) Halasz, I. Cryst. Growth
Des. 2010, 10, 2817−2823. (e) Maria, T. M. R.; Castro, R. A. E.;
Bebiano, S. S.; Silva, M. R.; Beja, A. M.; Canotilho, J.; Euseb
́
io, M. E. S.
Cryst. Growth Des. 2010, 10, 1194−1200.
(5) (a) Chan, H. K.; Doelker, E. Drug Dev. Ind. Pharm. 1985, 11,
315−332. (b) Shakhtshneider, T. P.; Boldyrev, V. V. Drug Dev. Ind.
Pharm. 1993, 19, 2055−2067. (c) Drebushchak, T. N.; Ogienko, A. A.;
Boldyreva, E. V. CrystEngComm 2011, 13, 4405−4410. (d) Otsuka,
M.; Nakanishi, M.; Matsuda, Y. Drug Dev. Ind. Pharm. 1999, 25, 205−
215. (e) Brittain, H. G. J. Pharm. Sci. 2002, 91, 1573−1580. (f) Cheng,
W.-T.; Lin, S.-Y. Int. J. Pharm. 2008, 357, 164−168. (g) Linol, J.;
Morelli, T.; Petit, M.-N.; Coquerel, G. Cryst. Growth Des. 2007, 7,
1608−1611. (h) Trask, A. V.; Shan, N.; Motherwell, W. D. S.; Jones,
W.; Feng, S.; Tan, R. B. H.; Cerpenter, K. J. Chem. Commun. 2005,
880−882. (i) Chierotti, M.; Ferrero, L.; Garino, N.; Gobetto, R.;
Pellegrino, L.; Braga, D.; Grepioni, F.; Maini, L. Chem.Eur. J. 2010,
16, 4347−4358.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details for solution-based synthesis, instrumental
experimental details, and PXRD, FTIR, and DSC data. This
material is available free of charge via the Internet at http://
tary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
(6) Otsuka, M.; Kaneniwa, N. J. Pharm. Sci. 1986, 75, 506−511.
(7) Yoshizawa, K.; Toyota, S.; Toda, F.; Chatziefthimiou, S.; Giastas,
P.; Mavridis, I. M.; Kato, M. Angew. Chem., Int. Ed. 2005, 44, 5097−
5100.
(8) (a) Holm, R. H.; Everett, G. W.; Chakravorty, A. Prog. Inorg.
Chem. 1966, 7, 83 and references therein. (b) Calligaris, M.;
Randaccio, L. In Comprehensive Coordination Chemistry; Reeves, R.
L., Ed.; Pergamon Press: Oxford, 1985; Vol. 2, p 715 and references
therein. (c) Amimoto, K.; Kawato, T. J. Photochem. Photobiol., C 2005,
6, 207 and references therein..
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
This research was supported by grants from the Ministry of
Science and Technology of the Republic of Croatia (Grant No.
■
(9) (a) Schiff, H. Ann. Chim. 1864, 131, 118−119. (b) Tidwell, T. T.
Angew. Chem., Int. Ed. 2008, 47, 1016−1020.
̌ ́ ̌ ̌ ́ ́
(10) Blagus, A.; Cincic, D.; Friscic, T.; Kaitner, B.; Stilinovic, V.
119-1193079-3069). We are grateful to Prof. Tomislav Frisc
̌ ̌ ́
ic
Maced. J. Chem. Chem. Eng. 2010, 29, 117−138.
and Dr. Vladimir Stilinovic for discussions and comments at
́
(11) The crystal structure of one polymorph out of four, form III,
was recently reported, but without any additional characterisation:
Zhou, J.-C.; Zhang, C.-M.; Li, N.-X.; Zhang, Z.-Y. Acta Crystallogr.,
Sect. E 2009, 65, o1700.
various stages of this manuscript.
REFERENCES
■
(12) The explored solvent-free reaction of Schiff base condensation is
only formally solvent-free, as water is generated in the reaction, but no
additional liquid was added.
(1) (a) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311−
2327. (b) Zaworotko, M. J. Cryst. Growth Des. 2007, 7, 4−9.
(c) MacGillivray, L. R. J. Org. Chem. 2008, 73, 3311−3317. (d) Braga,
D.; Grepioni, F. Chem. Commun. 2005, 3635−3645. (e) Sarma, J. A. R.
P.; Desiraju, G. R. Acc. Chem. Res. 1986, 19, 222−228. (f) Braga, D.;
(13) Dolotko, O.; Wiench, J. W.; Dennis, K. W.; Pecharsky, V. K.;
Balema, V. P. New J. Chem. 2010, 34, 25−28.
(14) Rothenberg, G.; Downie, A. P.; Raston, C. L.; Scott, J. L. J. Am.
Chem. Soc. 2001, 123, 8701−8708.
Grepioni, F. Angew. Chem., Int. Ed. 2004, 43, 4002−4011. (g) Frisc
T.; MacGillivray, L. R. Croat. Chem. Acta 2006, 79, 327−333.
̌ ̌ ́
(h) Cincic, D.; Friscic, T.; Jones, W. Chem. Mater. 2008, 20, 6623−
̌ ̌ ́
ic,
(15) Trask, A. V.; Motherwell, W. D. S.; Jones, W. Chem. Commun.
2004, 890−891.
̌
́
6626. (i) Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005,
44, 4670−4679. (j) Etter, M. C. J. Phys. Chem. 1991, 95, 4601−4610.
(k) Peddy, V.; McMahon, J. A.; Bis, J. A.; Zaworotko, M. J. J. Pharm.
(16) (a) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.;
̌ ́
Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs,
A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.;
Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, DOI: 10.1039/
C1CS15171A. (b) Experimental and Theoretical Studies in Modern
Mechanochemistry; Mulas, G., Delogu, F., Eds.; Transworld Research
Sci. 2006, 95, 499−516. (l) Aakeroy, C. B.; Beatty, A. M.; Helfrich, B.
̈
A. J. Am. Chem. Soc. 2002, 124, 14425−14432. (m) Frisc
̌ ̌ ́
ic, T.;
MacGillivray, L. R. Chem. Commun. 2009, 773−775.
(2) (a) Bernstein, J.; Davey, R. J.; Henck, J.-O. Angew. Chem., Int. Ed.
1999, 38, 3441−3461. (b) Dunitz, J. D.; Bernstein, J. Acc. Chem. Res.
1995, 28, 193−200. (c) Nangia, A. Acc. Chem. Res. 2008, 41, 595−604.
(d) Bernstein, J. Nat. Mater. 2005, 4, 427−428. (e) Desiraju, G. R.
Angew. Chem., Int. Ed. 2007, 46, 8342−8356.
́ ̌ ́
Network: Kerala, India, 2010. (c) Boldyrev, V. V.; Tkacova, K. J. Mater.
Synth. Process. 2000, 8, 121−132. (d) Boldyrev, V. V. J. Mater. Sci.
2004, 39, 5117−5120. (e) Boldyrev, V. V. Russ. Chem. Rev. 2006, 75,
177−189.
47
dx.doi.org/10.1021/cg2013705 | Cryst. Growth Des. 2012, 12, 44−48