10.1002/ejoc.201701764
European Journal of Organic Chemistry
FULL PAPER
desired product in presence of TEMPO and BHT confirms the
involvement of a radical intermediate in the reaction pathway.
Authors acknowledge the financial assistance from the
University of Delhi for providing a grant under the strengthening
of R&D Doctoral Research Programme and the DST-DU Purse
Grant Phase-II from India. M.G. is thankful to the CSIR (Council
of Scientific and Industrial Research) Delhi, India for providing
Junior Research Fellowship and Senior Research Fellowship.
Hence, on the basis of these results and literature reports,[10-14]
possible mechanism for the reaction has been proposed
(Scheme 3).
a
Initially, the radical initiator TBPB (10) undergoes thermal
homolytic cleavage to generate radicals 11 and 12. Thereafter,
these radicals selectively abstract hydrogen atom from DEF (2)
to generate radical 13, followed by its addition across the C-3
and C-4 C=C bond of coumarin (1a) to afford the intermediate
15. Subsequently, the intermediate 15 undergoes hydrogen
abstraction by tert-butyl radical (12) to afford the final product 3a
along with the formation of tert-butyl alcohol (14), a useful
reagent.
Keywords: Coumarin-3-carboxamide • Regioselective • Direct
amidation • Direct aroylation • Cross dehydrogenative coupling
.
[1]
a) L. Yang, H. Huang, Chem. Rev. 2015, 115, 3468-3517; b) T. Gensch,
M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016,
45, 2900-2936; c) X. Chen, K. M. Engle, D-H. Wang, J-Q. Yu, Angew.
Chem. Int. Ed. 2009, 48, 5094-5115; d) S. H. Cho, J. Y. Kim, J. Kwak,
S. Chang, Chem. Soc. Rev. 2011, 40, 5068-5083.
[2]
a) Metal-catalyzed Cross-Coupling Reactions (Eds.: F. Diederich, P. J.
Stang) Wiley-VCH: Weinheim, 2008; b) Handbook of C-H
Transformations: Applications in Organic Synthesis (Eds.: G., Dyker)
Wiley-VCH: Weinheim, 2005.
[3]
[4]
a) C-J. Li, Acc. Chem. Res. 2009, 42, 335-344; b) S. A. Girard, T.
Knauber, C-J Li, Angew. Chem. Int. Ed. 2014, 53, 74-100; c) L. Lv, Z. Li,
Top. Curr. Chem. 2010, 38, 374.
a) Guideline on the Specification for Residues of Metal Catalysts or
Metal Reagents, Doc. Ref. EMEA/CHMP/SWP/4446/2000, European
Medicines Agency, London, 2008;
deline/2009/09/WC500003586.pdf; b) G. Li, D. Schoneker, K. L. Ulman,
J. J. Sturm, L. M. Thackery, J. F. Kauffman, J. Pharm. Sci. 2015, 104,
4197-4206; c) S. B. Bari, B. R. Kadam, Y. S. Jaiswal, A. A. Shirkhedkar,
Eurasian J. Anal. Chem. 2007, 2, 32-53
a) F. Pérez-Cruz, S. Vazquez-Rodriguez, M. J. Matos, A. Herrera-
Morales, F. A. Villamena, A. Das, B. Gopalakrishnan, C. Olea-Azar, L.
Santana, E. Uriarte, J. Med. Chem. 2013, 56, 6136-6145; b) M.
Giuseppa, T. Domenico, B. K. Singh, A. K. Prasad, V. S. Parmar, C.
Naccari, M. Ferdinando, S. Antonina, C. Mariateresa, F. Omidreza, S.
Luciano, Biochimie, 2010, 92, 1101-1107.
Scheme 3: Plausible mechanisum for the carboxamidation of
coumarin
[5]
Conclusions
In summary, we have successfully described
a general
methodology for the regioselective C-3 functionlization of
coumarins and aza-coumarin with formamides and aldehydes
using radical initiator TBPB in single step. This methodology not
only provides a convenient, cost effective and shorter route to
access useful products but also includes some characteristic
features such as single step reaction, metal free approach, wide
substrate scope and excellent regioselectivity, thus making the
present methodology superior to the literature precedents.
[6]
[7]
a) D. Yu, M. Suzuki, L. Xie, S. L. Morris-Natschke, K-H. Lee, Med. Res.
Rev. 2003, 23, 322-345; b) I. Kostova, S. Raleva, P. Genova, R.
Argirova, Bioinorg. Chem. Appl. 2006, 1-9.
(a) M. A. Musa, J. S. Cooperwood, M. O. F. Khan, Curr. Med. Chem.
2008, 15, 2664-2679; b) I. Kempen, D. Papapostolou, N. Thierry, L.
Pochet, S. Counerotte, B. Masereel, J-M. Foidart, M. Reboud-Ravaux,
A. Noel, B. Pirotte, Br. J. Cancer, 2003, 88, 1111-1118.
P. Anand, B. Singh, N. Singh, Bioorg. Med. Chem. 2012, 20, 1175-
1180.
a) M. J. Matos, D. Viña, E. Quezada, C. Picciau, G. Delogu, F. Orallo, L.
Santana, E. Uriarte, Bioorg. Med. Chem. Lett. 2009, 19, 3268-3270; b)
M. J. Matos, D. Viña, C. Picciau, F. Orallo, L. Santana, E. Uriarte,.
Bioorg. Med. Chem. Lett. 2009, 19, 5053-5055.
[8]
[9]
Experimental Section
[10] M. Kojima, K. Oisaki, M. Kanai, Chem. Commun. 2015. 51. 9718-9721.
[11] a) P. Chauhan, M. Ravi, S. Singh, P. Prajapati, P. P. Yadav, RSC Adv.
2016, 6, 109-118; b) F. Jafarpour, S. Zarei, M. B. A. Olia, N.
Jalalimanesh, S. Rahiminejadan, J. Org. Chem. 2013, 78, 2957-2964;
c) F. Jafarpour, M. B. A. Olia, H. Hazrati, Adv. Synth. Catal. 2013, 355,
3407-3412. (d) M. Min, S. Hong, Chem. Commun. 2012, 48, 9613-
9615; (e) M. Khoobi, M. Alipour, S. Zarei, F. Jafarpour, A. Shafia, Chem.
Commun. 2012, 48, 2985-2987; (f) F. Jafarpour, H. Hazrati, N.
Mohasselyazadi, M. Khoobi, A. Shafiee, Chem. Commun. 2013, 49,
10935-10937.
General procedure for the cross coupling reaction of coumarins with
formamides/aldehydes.
To an oven-dried screw cap reaction tube charged with magnetic bead,
0.17 mmol of coumarin was added to it. Subsequently, 0.51 mmol of
TBPB, 0.51 mmol of formamides/aldehyde and 2 mL of benzene were
added using micro litre pipette, the reaction mixture was then allowed to
heat at 90 oC for 24 h on a preheated oil bath. After the completion of
reaction as monitored by TLC, the reaction mixture was allowed to cool.
The solvent present in the reaction mixture was evaporated under
vaccum and the residue thus obtained was extracted with ethyl acetate
and water (3x50 mL), the combined organic layers were dried over
anhydrous Na2SO4 and evaporated to dryness to yield crude product
which was further purified by column chromatography using ethyl acetate
and hexane as eluents.
[12] A. Banerjee, S. K. Santra, N. Khatun, W. Ali, B. K. Patel, Chem.
Commun. 2015, 51, 15422-15425.
[13] a) X. Mi, M. Huang, J; Zhang, C. Wang, Y. Wu, Org. Lett. 2013, 15,
6266-6269; b) S. Guo, J. Gong, Z. Zhu, L. Yu, Y. Wang, L. Huang, H.
Cai, Chem. Lett. 2016, 45, 825-827; c) I. Kim, M. Min, D. Kang, K. Kim,
S. Hong, Org. Lett. 2017, 19, 1394-1397; d) X. Mia, M. Huang, J. Wang,
Y. Wu, Org. Lett. 2013, 15, 6266-6269.
[14] a) F. Jafarpour, M. Abbasnia, J. Org. Chem. 2016, 81, 11982-11986; b)
W. Zhao, L. Xu, Y. Ding, B. Niu, P. Xie, Z. Bian, D. Zhang, A. Zhou, Eur.
J. Org. Chem. 2016, 325-330; c) J-W. Yuan, Q-Y. Yin, L-R. Yang, W-P.
Mai, P. Mao, Y-M. Xiao, L-B Qu, RSC Adv. 2015, 5, 88258-88265.
[15] M. Min, Y. Kin, S. Hong, Chem. Commun. 2013, 49, 196-198.
Acknowledgements
This article is protected by copyright. All rights reserved.