10.1002/cbic.202000658
ChemBioChem
COMMUNICATION
residue Phe343 and the aromatic side chains of the surrounding
residues, including Phe336, Phe344, Phe356, His358, and
Trp458 (Figure 3B). As these residues are located at the flexible
loops in the active pocket and the outer shell of PcHNL5, these
newly introduced hydrophobic interactions might dramatically
enhance enzyme stability. Using aldehyde α7 at a concentration
of 1 M and a PcHNL5 L343F (purified enzyme) dose of 1.0 mg
per mmol substrate, the biohydrocyanation was complete within
12 h, affording 97% conversion and 99% ee. In contrast, the wild-
type enzyme gave only 80% conversion and 98% ee (Figure S14).
Approximately twice times of the wild-type enzyme compared with
the variant was needed to obtain the same result.
In summary, we have developed a rapid and reliable
colorimetric assay method that enables the high-throughput
quantification of hydrocyanation reactions. We hope that this
high-throughput assay methodology could provide opportunities
for rapid evaluation of the hydrocyanation ability of HNLs toward
tested aldehydes through directed evolution. Furthermore, as
ABAO showed low reactivity toward ketones, the search for
ketone-reactive chromogen compounds is now ongoing in our
laboratory.
[9]
B. Krammer, K. Rumbold, M. Tschemmernegg, P. Pöchlauer, H. Schwab,
J. Biotechnol. 2007, 129, 151–161.
[10] (a) Y. Asano, K. Tamura, N. Doi, T. Ueatrongchit, A. H. Kittikun, T.
Ohmiya, Biosci. Biotechnol. Biochem. 2005, 69, 2349–2357; (b) S.
Nanda, Y. Kato, Y. Asano, Tetrahedron: Asymmetry 2006, 17, 735–741;
J. Andexer, J. V. Langermann, A. Mell, M. Bocola, U. Kragl, T. Eggert, M.
Pohl, Angew. Chem. Int. Ed. 2007, 46, 8679–8681; (c) M. Dadashipoura,
Y. Ishidaa, K. Yamamotoa, Y. Asano, Proc. Natl. Acad. Sci. U.S.A. 2015,
112, 10605–10610. (d) E. Lanfranchi, T. Pavkov-Keller, E.-M. Koehler,
M. Diepold, K. Steiner, B. Darnhofer, J. Hartler, T. Van Den Bergh, H.-J.
Joosten, M. Gruber-Khadjawi, G. G. Thallinger, R. Birner-Gruenberger,
K. Gruber, M. Winkler, A. Glieder, Sci. Rep. 2017, 7, 46738. (e) K. Isobe,
A. Kitagawa, K. Kanamori, N. Kashiwagi, D. Matsui, T. Yamaguchi, K.
Fuhshuku, H. Semba, Y. Asano, Biosci. Biotechnol. Biochem. 2018, 82,
1760–1769; (f) E. Lanfranchi, B. Grill, Z. Raghoebar, S. Van Pelt, R. A.
Sheldon, K. Steiner, A. Glieder, M. Winkler, ChemBioChem 2018, 19,
312.
[11] A. K. Ressmann, D. Schwendenwein, S. Leonhartsberger, M. D.
Mihovilovic, U. T. Bornscheuer, M. Winkler, F. Rudroff, Adv. Synth. Catal.
2019, 361, 2538–2543.
[12] Y.-C. Zheng, J.-H. Xu, H. Wang, G.-Q. Lin, R. Hong, H.-L. Yu, Adv. Synth.
Catal. 2017, 359, 1185–1193.
[13] Y. Asano, M. Dadashipour, M. Yamazaki, N. Doi, H. Komeda, Protein
Eng. Des. Sel. 2011, 24, 607–616.
Acknowledgements ((optional))
[14] H. Bühler, F. Effenberger, S. Förster, J. Roos, H. Wajant, H.
ChemBioChem 2003, 4, 211–216.
This work was financially supported by the National Key Research
and Development Program of China (2019YFA09005000 and
2018YFC1706200), the National Natural Science Foundation of
China (21922804, 21871085, 21776085 and 21536004), the
Chinese Academy of Sciences (XDB20020000 and QYZDY-
SSWSLH026), and the Fundamental Research Funds for the
Central Universities (22221818014). We would like to thank Prof.
Florian Rudroff (TU Wien) for his helpful discussions and Mr Jun
Zhu (ECUST) for his experimental assistance. We are also
grateful for the access to beamline BL19U1 at Shanghai
Synchrotron Radiation Facility and thank the beamline staff for the
technical helps.
[15] Y. -C. Zheng, F. -L. Li, Z. Lin, G. -Q. Lin, R. Hong, H. -L. Yu, J. -H. Xu,
ACS Catal. 2020, 10, 5757−5763.
[16] B. Pscheidt, Z. B. Liu, R. Gaisberger, M. Avi, W. Skranc, K. Gruber, H.
Griengl, A. Glieder, Adv. Synth. Catal. 2008, 350, 1943–1948.
[17] A. Glieder, R. Weis, W. Skranc, P. Poechlauer, I. Dreveny, S. Majer, M.
Wubbolts, H. Schwab, K. Gruber, Angew. Chem. Int. Ed. 2003, 42, 4815–
4818.
Keywords: cyanohydrin • hydrocyanation • 2-amino-
benzamidoxime • high-throughput screening • directed evolution
[1]
[2]
M. Dadashipou, Y. Asano, ACS Catal. 2011, 1, 1121–1149.
P. Bracco, H. Busch, J. V. Langermann, U. Hanefeld, Org. Biomol. Chem.
2016, 14, 6375–6389.
[3]
(a) J. N. Andexer, J. V. Langermann, U. Kragl, M. Pohl, Trends
Biotechnol. 2009, 27, 599–607; (b) B. Pscheidt, M. Avi, R. Gaisberger,
F. S. Hartner, W. Skranc, A. Glieder, J. Mol. Catal. B: Enzym. 2008, 52-
53, 183–188.
[4]
[5]
J. V. Langermann, J. K. Guterl, M. Pohl, H. Wajant, U. Kragl, Bioprocess.
Biosyst. Eng. 2008, 31, 155–161.
(a) U. T. Bornscheuer, B. Hauer, K. E. Jaeger, U. Schwaneberg, Angew.
Chem. Int. Ed. 2019, 58, 36–40; (b) J. Wang, G. Li, M. T. Reetz, Chem.
Commun. 2017, 53, 3916–3928; (c) G. Qu, A. Li, C. G. Acevedo-Rocha,
Z. Sun, M. T. Reetz, Angew. Chem. Int. Ed. 2019, 58, 36–40; (d) C. Ren,
W. Xin, J. Mencius, Q. Shu, Bioresour. Bioprocess. 2019, 6, 53.
(a) Bove, E. E. Conn, J. Biol. Chem. 1961, 236, 207–210; (b) N.
Kawahara, Y. Asano, ChemBioChem, 2015, 16, 1891–1895; (c) Z. B. Liu,
B. Pscheidt, M. Avi, R. Gaisberger, F. S. Hartner, C. Schuster, W. Skranc,
K. Gruber, A. Glieder, ChemBioChem 2008, 9, 58–61.
[6]
[7]
[8]
H. Agarwalla, M. Gangopadhyay, D. K. Sharma, S. K. Basu, S. Jadhav,
A. Chowdhury, A. Das, J. Mater. Chem. B, 2015, 3, 9148–9156.
J. Andexer, J. K. Guterl, M. Pohl, T. Eggert, Chem. Commun. 2006, 4,
4201–4203.
4
This article is protected by copyright. All rights reserved.