Y. Nakamura et al. / Tetrahedron Letters 47 (2006) 239–243
243
Angew. Chem., Int. Ed. 2003, 42, 83–85; (c) You, S.-L.;
Kelly, J. W. J. Org. Chem. 2003, 68, 9506–9509; (d) You,
S.-L.; Kelly, J. W. Chem. Eur. J. 2004, 10, 71–75; (e) You,
S.-L.; Kelly, J. W. Tetrahedron 2005, 61, 241–249.
3. (a) Shin, C.; Abe, C.; Yonezawa, Y. Chem. Lett. 2004, 33,
664–665; (b) Yonezawa, Y.; Tani, N.; Shin, C. Bull. Chem.
Soc. Jpn. 2005, 78, 1492–1499.
MgCl
Et2O
(C8F17CH2CH2)3Si
(C8F17CH2CH2)3SiF
reflux, 24 h
22
3
62%
Scheme 5. Attempt to recycle the recovered fluorous silylfluoride.
4. (a) You, S.-L.; Deechongkit, S.; Kelly, J. W. Org. Lett.
2004, 6, 2627–2630; (b) You, S.-L.; Kelly, J. W. Tetra-
hedron Lett. 2005, 46, 2567–2570.
5. (a) Crich, D.; Neelamkavil, S. J. Am. Chem. Soc. 2001,
123, 7449–7450; (b) Crich, D.; Neelamkavil, S. Tetra-
hedron 2002, 58, 3865–3870.
As to the fluorous product 22 that was obtained from
FC-72 layer on deprotection of FTeoc group with
TBAF, we were very pleased to find that a reaction of
the fluorous product 22 with vinyl magnesium chloride
in FC-72 provided vinyl silane 3 in moderate yield
(Scheme 5).15 1H NMR spectra of the vinyl silane prod-
uct 3 was the same as that of the sample obtained by the
reaction of tris(perfluorodecyl)silylbromide 2 with vinyl
magnesium chloride.16 Therefore the fluorous product
22 must be tris(perfluorodecyl)silylfluoride and have
6. (a) Mizuno, M.; Goto, K.; Miura, T.; Matsuura, T.;
Inazu, T. Tetrahedron Lett. 2004, 45, 3425–3428; (b) Goto,
K.; Miura, T.; Mizuno, M.; Takaki, H.; Imai, N.;
Murakami, Y.; Inazu, T. Synlett 2004, 2221–2223; (c)
Miura, T.; Satoh, A.; Goto, K.; Murakami, Y.; Imai, N.;
Inazu, T. Tetrahedron: Asymmetry 2005, 16, 3–6.
7. (a) Luo, Z.; Zhang, Q.; Oderaotoshi, Y.; Curran, D. P.
Science 2001, 291, 1766–1769; (b) Curran, D. P.; Furu-
kawa, T. Org. Lett. 2002, 4, 2233–2235; (c) Zhang, W.;
Luo, Z.; Chen, C. H.-T.; Curran, D. P. J. Am. Chem. Soc.
2002, 124, 10443–10450; (d) Zhang, Q.; Lu, H.; Richard,
C.; Curran, D. P. J. Am. Chem. Soc. 2004, 126, 36–37; (e)
Dandapani, S.; Jeske, M.; Curran, D. P. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 12008–12012; (f) Manku, S.;
Curran, D. P. J. Org. Chem. 2005, 70, 4470–4473.
8. Luo, Z.; Williams, J.; Read, R. W.; Curran, D. P. J. Org.
Chem. 2001, 66, 4261–4266.
1
high purity judging from its H NMR spectra in FC-
72 (C6D6 was used as an external lock and standard).17
Identification of the fluorous product 22 and optimiza-
tion of the recycling process are now underway.
In conclusion, we synthesized bistratamide H expedi-
tiously by using the new fluorous protecting group.
The isolation of the fluorous intermediates by fluorous
liquid extraction was very easy and quick, although
the fluorine atom content was just about 48% at the final
stage. Optimization of the reactions was carried out as
usual by monitoring the reactions with TLC. The enan-
tiomeric purities of the fluorous intermediates were
checked by HPLC with a chiral column to find optimal
reaction conditions for avoiding racemization of the
products. In addition, the fluorous fragment from the
fluorous protecting group was demonstrated to be
recycled.
9. Schwinn, D.; Bannwarth, W. Helv. Chim. Acta 2002, 85,
255–264.
10. (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd ed.; Wiley Interscience: New York,
´
1999; (b) Kocienski, P. J. Protecting Groups, 3rd ed.;
Georg Thieme: Stuttgart, 2005.
11. Soderquist, J. A.; Hassner, A. J. Organomet. Chem. 1978,
156, C12–C16.
12. Wipf, P.; Hayes, G. B. Tetrahedron 1998, 54, 6987–6998.
13. Williams, D. R.; Lowder, P. D.; Gu, Y.-G.; Brooks, D. A.
Tetrahedron Lett. 1997, 38, 331–334.
14
14. Data of synthetic bistratamide H: ½aꢀD ꢁ103.1 (c 0.385,
Acknowledgements
25
MeOH) (lit.½aꢀD ꢁ92.9 (c 1.1, MeOH)1a); 1H NMR
(250 MHz, DMSO-d6) d 0.89–0.99 (m, 12H), 2.14–2.28
(m, 3H), 2.59 (s, 3H), 5.07 (dd, 1H, J = 5.2 and 8.5 Hz),
5.36 (dd, 1H, J = 5.5 and 8.5 Hz), 5.45 (dd, 1H, J = 6.6
and 9.7 Hz), 8.33 (s, 1H), 8.35 (s, 1H), 8.37 (d, 1H,
J = 9.7 Hz), 8.50 (d, 1H, J = 8.5 Hz), 8.54 (d, 1H, 8.5 Hz);
13C NMR (63 MHz, DMSO-d6) d 11.5, 18.2, 18.3, 18.4,
18.8, 19.2, 33.0, 34.6, 34.8, 52.6, 54.8, 55.0, 125.0, 125.5,
128.0, 148.0, 148.5, 153.6, 159.2, 159.7, 159.9, 160.7, 168.7,
169.2; MALDI-TOFMS calcd for C25H32N6O4S2:
567.1810 [M+Na]+ found: 567.1955.
The authors would like to thank Professor Dennis P.
Curran, University of Pittsburgh and Professor Willi
Bannwarth, Albert-Ludwigs-Universitat Freiburg for
their helpful suggestions. They also would like to thank
Dr. Nobuto Hoshi, Noguchi Research Institute and Dr.
Naoto Takada, Central Glass International, Inc. for
their valuable advices about the fluorous silylfluoride
and Noguchi Research Institute for the Noguchi Fluor-
ous ProjectÕs Fund. This work has been done as a part of
the project.
15. (a) Ogi K. MasterÕs thesis, Tohoku University, 1973; (b)
Boutevin, B.; Guida-Pietrasanta, F.; Ratsimihety, A.;
Caporiccio, G. J. Fluorine Chem. 1995, 70, 53–57.
16. 1H NMR data of vinylsilane 3: (250 MHz, FC-72, external
C6D6 lock) d 6.39 (dd, 1H, J =3.9 and 14.7 Hz), 6.32 (dd,
1H, J = 14.7 and 20.2 Hz), 6.02 (dd, 1H, J = 3.9 and
20.2 Hz), 2.39–2.19 (m, 6H), 1.21–1.14 (m, 6H).
References and notes
1. (a) Perez, L. J.; Faulkner, D. J. J. Nat. Prod. 2003, 66,
247–250; (b) Rudi, A.; Chill, L.; Aknin, M.; Kashman, Y.
J. Nat. Prod. 2003, 66, 575–577.
2. (a) Raman, P.; Razavi, H.; Kelly, J. W. Org. Lett. 2000, 2,
3289–3292; (b) You, S.-L.; Razavi, H.; Kelly, J. W.
17. Data of fluorosilane 22: 1H NMR (250 MHz, FC-72,
external C6D6 lock) d 2.46–2.26 (m, 6H), 1.26–1.19 (m,
6H); CI-MS (negative, m/z, %) 1387.9 (15), 979.1 (100),
921.1 (91), 551.1 (17), 350.1 (15).