Table 5 Bond valences parameters of Zn–Hg in 1–3
P. A. W. Dean and J. J. Vittal, Inorg. Chem., 1994, 72, 1127;
(c) P. A. W. Dean and J. J. Vittal, Polyhedron, 1998, 17, 1937;
(d) P. A. W. Dean, J. J. Vittal, D. C. Craig and M. L. Scudder, Inorg.
Chem., 1998, 37, 1661.
Total bond
Compound
valence, Vi of M
% of M–Se
% of M–O
2 (a) T. C. Deivaraj, P. A. W. Dean and J. J. Vittal, Inorg. Chem.,
2000, 39, 3071; (b) P. A. W. Dean and J. J. Vittal, Inorg. Chem.,
1993, 32, 791.
3 P. A. W. Dean and J. J. Vittal, Inorg. Chem., 1996, 35, 3089.
4 R. Devy, J. J. Vittal and P. A. W. Dean, Inorg. Chem., 1998, 37,
6939.
1
2
3
2.048
2.129
2.351
85.5
86.0
93.7
14.5
13.4
6.3
bipyramidal (s = 0.76).34 The O(1) atom in 2 is located much
closer to the Se3 plane compared to 1, and this interaction leads
to the large Se(1)–Cd(1)–Se(2) angle (123.34°). The sum of the
O–Cd–O angles is 359.8° with the Cd atom displaced from the
O3 plane by 0.049 Å, and the dihedral angle between the O3 and
Se3 planes is 59.4°.30
The Hg–Se distances in 3 (2.543–2.587 Å) are comparable with
those presence in the reported compound, (Bu4N)[Hg(SePh)3]12
(2.536–2.600 Å). The large Se(1)–Hg(1)–Se(2) angle (126.04°)
is consistent with the location of the C(1)–O(1) carbonyl group
between Se(1) and Se(2). The sum of the van der Waals radii of
Hg and O (4.02 Å) indicates that there are interactions between
the Hg atom and all three carbonyl oxygen atoms. Neverthe-
less, a bond valence calculation (see below) suggests that this
interaction contributes only weakly to the overall metal–ligand
bonding in the anion. The sum of the Se–Hg–Se angles, 359.93°
supports trigonal planar geometry at the metal centre. Further,
the Hg atom in 3 is located much further from the O3 plane
(0.164 Å; the sum of the O–Hg–O angles is 308.2°)30 than is
found for Zn and Cd, in 1 and 2.
The relatively longer M–Se(2) distances as compared to
M–Se(1) and M–Se(3), and shorter C–Se bonds found for ligand
2 in 1 and 2 suggest larger C–Se double bond character. This is
reflected in relatively longer C(2)–O(2) distances, indicating the
possibility of electron delocalization in this selenocarboxylate
ligand (Table 4). As a result the carbonyl oxygen atom O(2)
binds most strongly to M. The extent of electron delocalization
is in the order 1 > 2 > 3. In addition, the MO(2) bonding in
1 and 2 is further confirmed from the fact that M–Se(2)–C(2)
angles are smaller than the other two and M–O(2)–C(2) angles
are larger than the other two.
5 (a) G. Shang, M. J. Hampden-Smith and E. N. Duesler, Chem.
Commun., 1996, 1733; (b) G. Shang, K. Kunze, M. J. Hampden-
Smith and E. N. Duesler, Chem. Vap. Deposition, 1996, 2, 242;
(c) M. D. Nyman, M. J. Hampden-Smith and E. N. Duesler, Chem.
Vap. Deposition, 1996, 2, 171.
6 (a) M. D. Nyman, K. Jenkins, M. J. Hampden-Smith, T. T. Kodas,
E. N. Duesler, A. L. Rheingold and M. L. Liable-Sands, Chem.
Mater., 1998, 10, 914; (b) M. D. Nyman, M. J. Hampden-Smith and
E. N. Duesler, Inorg. Chem., 1997, 36, 2218.
7 (a) T. C. Deivaraj, J.-H. Park, M. Afzaal, P. O’Brien and J. J. Vittal,
Chem. Mater., 2003, 15, 2383; (b) T. C. Deivaraj, J.-H. Park,
M. Afzaal, P. O’Brien and J. J. Vittal, Chem. Commun., 2001, 2304.
8 (a) T. C. Deivaraj, M. Lin, K. P. Loh, M. Yeadon and J. J. Vittal,
J. Mater. Chem., 2003, 13, 1149; (b) M. Lin, K. P. Loh, T. C. Deivaraj
and J. J. Vittal, Chem. Commun., 2002, 1400.
9 S. Kato, H. Kageyama, K. Takagi, K. Mizoguchi and T. Murai,
J. Prakt. Chem., 1990, 332, 898.
10 O. Niyomura, K. Tani and S. Kato, Heteroat. Chem., 1999, 10, 373.
11 L. Zheng, W. Huang and J. J. Vittal, New J. Chem., 2002, 26, 1122.
12 E. S. Lang, M. M. Dias, U. E. Abram and M. Z. Vázquez-López,
Anorg. Allg. Chem., 2000, 626, 784.
13 U. Behrens, K. Hoffman and G. Klar, Chem. Ber., 1977, 110,
3672.
14 D. P. Thompson and P. Boudjouk, J. Org. Chem., 1988, 53, 2109.
15 13C NMR of the cation, PPh4+ (CDCl3): d 135.6 (C4, 4J(P–C) = 2 Hz),
134.3 (C2,6, 2J(P–C) = 10 Hz), 130.68 (C3, 5, 3J(P–C) = 13 Hz), 117.87
(C1, 1J(P–C) = 89 Hz).
16 SMART & SAINT Software Reference manuals, Version 6.22,
Bruker AXS, Analytical Instrumentation, Madison, Wisconsin,
USA, 2001.
17 G. M. Sheldrick, SADABS; software for empirical absorption
correction, University of Göttingen, Göttingen, Germany, 2000.
18 SHELXTL Reference Manual, Version 5.1; Bruker AXS, Analytical
Instrumentation, Madison, WI, 2000.
19 C. Amman, P. Meier and A. E. Merbach, J. Magn. Reson., 1982,
46, 319.
20 J. Led and S. B. Petersen, J. Magn. Reson., 1978, 32, 1.
21 G. K. Carson and P. A. W. Dean, Inorg. Chim. Acta, 1982, 66, 37.
22 P. A. W. Dean and V. Manivannan, Can. J. Chem., 1990, 68, 214.
23 P. A. W. Dean and V. Manivannan, Inorg. Chem., 1990, 29, 2997.
24 R. G. Kidd, Annu. Rep. NMR Spectrosc., 1980, 10a, 6.
25 R. J. Goodfellow, inMultinuclear NMR, ed. J. Mason, Plenum,
New York, 1987.
26 M. A. Ansari, C. H. Mahler, G. S. Chorghade and J. Ibers, Inorg.
Chem., 1990, 29, 3832.
27 U. Rajalingam, P. A. W. Dean and H. A. Jenkins, Can. J. Chem.,
2000, 78, 590.
MS3 trigonal planar geometry is well known for thiolate
species having bulky ligands.35,36 Thus, a plausible explanation
to the MSe3 trigonal planar geometry in compounds 1–3 is the
presence of relatively ‘inactive’carboxylate groups. Interestingly,
the mean M–Se bond distances in these compounds (Table 4)
follow the unexpected trend, Zn < Hg < Cd. The analogous
trend was found for the corresponding [M(SC{O}Ph)3]−, and is
known in other instances for Zn–Hg.37
The bond valence approach38 was used to estimate the
contribution of metaloxygen interaction toward the overall
bonding in the anions of 1–3. The results of the bond valence
calculation are shown in Table 5 and suggest that compound
3 could be a better oxygen donor metalloligand (oxygen
atoms more available for “outside” coordination) than 1 or 2.
Overall, the monoselenocarboxylatometallate anions in 1–3
contain structural features very similar to those found in their
sulfur analogues, [M(SC{O}Ph)3]−; these appear to be due to
geometrical restraints imposed by the presence of the carbonyl
groups once the three Se or S are bound to the metal.
28 M. A. Malik, M. Notevalli and P. O’Brien, Polyhedron, 1999, 18,
1259.
29 A. Bondi, J. Phys. Chem., 1964, 68, 441.
30 A similar feature occurs in all three anions [M(SC{O}Ph)3]−
(M = Zn, Cd, Hg)3.
31 R. Subramanian, N. Govindaswamy, R. A. Santos, S. A. Koch and
G. S. Harbison, Inorg. Chem., 1998, 37, 4929.
32 V. García-Montalvo, J. Novosad, P. Kilian, J. D. Woollins, A. M. Z.
Slawin, P. G. Y. García, M. López-Cardoso, G. Espinosa-Pérez and
R. Cea-Olivares, J. Chem. Soc., Dalton Trans., 1997, 1025.
33 P. A. W. Dean, J. J. Vittal and N. C. Payne, Inorg. Chem., 1987, 26,
1683.
34 (a) A. W. Addision, T. N. Rao, J. Reedjik, J. van Jijn and G. C.
Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349; (b) A. W.
Addision, R. N. Rao and R. Sinn, Inorg. Chem., 1984, 23, 1957;
(c) G. Murphy, C. O’Sullivan, B. Murphy and B. Hathaway, Inorg.
Chem., 1998, 37, 240; (d) D. S. Marlin, M. M. Olmstead and
P. K. Mascharak, Inorg. Chem., 2001, 40, 7003.
35 E. S. Gruff and S. A. Koch, J. Am. Chem. Soc., 1990, 112, 1245.
36 R. A. Santos, E. S. Gruff and G. S. Harbison, J. Am. Chem. Soc.,
1991, 113, 469.
Acknowledgements
J. J. V. thanks the National University of Singapore for financial
support. P. A. W. D. thanks Dr. Chris Kirby, Manager, NMR
Facility, UWO, for expert assistance in obtaining the 77Se, 113Cd
and 199Hg NMR spectra. We would like to thank Mr Zheng Lu
for his help in synthesis and his interest.
37 J. C. Bollinger, L. C. Roof, D. M. Smith, J. M. McConnachie and
J. A. Ibers, Inorg. Chem., 1995, 34, 1430.
38 I. D. Brown and D. Alternatt, Acta Crystallogr., Sect. B, 1985,
41, 244.
References
1 (a) J. T. Sampanthar, T. C. Deivaraj, J. J. Vittal and P. A. W. Dean,
J. Chem. Soc., Dalton Trans., 1999, 4419; (b) T. R. Burnett,
2 8 9 4
D a l t o n T r a n s . , 2 0 0 4 , 2 8 9 0 – 2 8 9 4