pubs.acs.org/acsmedchemlett
Table 2. Pharmacokinetic Properties of Compound 22a
REFERENCES
(1)
Mackay, C. R. Chemokines: Immunology's high impact fac-
tors. Nat. Immunol. 2001, 2, 95–101.
dose
AUC
Vdss
Clp
t1/2
species (iv/po; mg/kg) F (%) (po; μM h) (L/kg) (mL/min/ kg) (h)
3
(2)
Charo, I. F.; Myers, S. J.; Herman, A.; Franci, F.; Connolly, A. J.;
Coughlin, S. R. Molecular cloning and functional expression
of two monocyte chemoattractant protein 1 receptors reveals
alternative splicing of the carboxyl-terminal tails. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 2752–2756.
rat
1/3
1/2
1/2
48
63
66
5.3
33
4.7
0.4
0.5
0.9
8.1
1.1
8.3
0.9
5.5
4.9
dog
rhesus
a Rat pk was analyzed in blood; dog and mouse were analyzed in
plasma.
(3)
Dawson, J.; Miltz, W.; Mir, A. K.; Weissner, C. Targeting
monocyte chemoattractant protein-1 signalling in disease.
Expert Opin. Ther. Targets 2003, 7 (1), 35–48.
(4)
(5)
Feria, M.; Diaz-Gonzalez, F. The CCR2 receptor as a thera-
peutic target. Expert Opin. Ther. Pat. 2006, 16, 49–57.
Gong, J.-H.; Ratkay, L. G.; Waterfield, J. D.; Clark-Lewis, I. An
antagonist of monocyte chemoattractant Protein 1 (MCP-1)
inhibits arthritis in the MRL-lpr mouse model. J. Exp. Med.
1997, 186 (1), 131–137.
(6)
(7)
Izikson, L.; Klein, R. S.; Luster, A. D.; Weiner, H. L. Targeting
monocyte recruitment in CNS autoimmune disease. Clin.
Immunol. 2002, 102 (2), 125–131.
Gosling, J.; Slaymaker, S.; Gu, L.; Tseng, S.; Zlot, C. H.; Young,
S. G.; Rollins, B. J.; Charo, I. F. MCP-1 deficiency reduces
susceptibility to atherosclerosis in mice that overexpress
human apolipoprotein B. J. Clin. Invest. 1999, 103, 773–778.
Donnelly, L. E.; Rogers, D. F. Therapy for chronic obstructive
pulmonary disease in the 21st century. Drugs 2003, 63,
1973–1998.
(8)
(9)
Figure 2. In vivo potency of 22 determined by ex vivo rhesus
Mellado, M.; deAna, A. M.; Gomez, L.; Martinez-A, C.;
Rodriguez-Frade, J. M. Chemokine receptor 2 blockade pre-
vents asthma in a cynomolgus monkey model. J. Pharmacol.
Exp. Ther. 2008, 324, 769–775.
whole blood shape change assay.34
concentration responsive curve that gave an estimated IC50 of
0.9 nM (Figure 2).34 This is consistent with the potency of 22
on rhesus CCR2 determined in in vitro whole blood spiking
experiments in rhesus blood (IC50's of 30 nM and 0.2 nM with
30 min and 24 h preincubations, respectively). Our data
suggest that subnanomolar potency can be achieved in vivo.
In summary, we have improved upon the IKr selectivity
and CCR2 potencyof antagonist lead 1 to give antagonists 17
and 22 which are orally bioavailable, potent functional
antagonists of CCR2. Compound 22 was highly selective
for CCR2, with the exception of related chemokine receptor
CCR5, where it also had potent activity. The potent in vivo
efficacy of compound 22 was demonstrated using an ex vivo
rhesus whole blood shape change assay. On the basis of its
potency, in vivo efficacy, safety, and oral bioavailability,
compound 22 was selected as a clinical candidate for the
CCR2 program at Merck.
(10) Tamura, Y.; Sugimoto, M.; Muruyama, T.; Ueda, Y.; Kanamori,
H.; Ono, K.; Ariyasu, H.; Akamizu, T.; Kita, T.; Yokode, M.;
Arai, H. Inhibition of CCR2 ameliorates insulin resistance and
hepatic steatosis in db/db mice. Arterioscler. Thromb. Vasc.
Biol. 2008, 28, 2195–2201.
(11) Weisberg, S. P.; Hunter, D.; Huber, R.; Lemieux, J.; Slaymaker,
S.; Vaddi, K.; Charo, I.; Leibel, R. L.; Ferrante, A. W.Jr. CCR2
modulates inflammatory and metabolic effects of high-fat
feeding. J. Clin. Invest. 2006, 116 (1), 115–124.
(12) Abbadie, C.; Lindia, J. A.; Cumiskey, A. M.; Peterson, L. B.;
Mudgett, J. S.; Bayne, E. K.; DeMartino, J. A.; MacIntyre, D. E.;
Forrest, M. J. Impaired neuropathic pain responses in mice
lacking the chemokine receptor CCR2. Proc. Natl. Acad. Sci. U.
S.A. 2003, 100 (13), 7947–7952.
(13) Yang, L.; Zhou, C.; Guo, L.; Morriello, G.; Butora, G.;
Pasternak, A.; Parsons, W. H.; Mills, S.; MacCoss, M.; Vicario,
P. P.; Zweerink, H.; Ayala, J. M.; Goyal, S.; Hanlon, W. A.;
Cascieri, M. A.; Springer, M. S. Discovery of 3,5-bis-
(trifluoromethyl)benzyl L-arylglycinamide based potent
CCR2 antagonists. Bioorg. Med. Chem. Lett. 2006, 16 (14),
3735–3739.
(14) Pasternak, A.; Marino, D.; Vicario, P. P.; Ayala, J. M.; Cascierri,
M. A.; Parsons, W. H.; Mills, S. G.; MacCoss, M.; Yang, L. Novel,
orally bioavailable γ-aminoamide CC chemokine receptor
2 (CCR2) antagonists. J. Med. Chem. 2006, 49 (16), 4801–4804.
(15) Yang, L.; Butora, G.; Jiao, R. X.; Pasternak, A.; Zhou, C.;
Parsons, W. H.; Mills, S. G.; Vicario, P. P.; Ayala, J. M.; Cascieri,
M. A.; MacCoss, M. Discovery of 3-piperidinyl-1-cyclopenta-
necarboxamide as a novel scaffold for highly potent CC
chemokine receptor 2 antagonists. J. Med. Chem. 2007, 50
(11), 2609–2611.
SUPPORTING INFORMATION AVAILABLE Experimental
details for the synthesis and characterization of CCR2 antagonists
3, 17, and 22. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author: *To whom correspondence should be
addressed. Phone: (732) 594-3847. Fax: (732) 594-9556. E-mail:
ABBREVIATIONS CCR2, CC chemokine receptor 2; CCL2,
CC chemokine ligand 2; CCR5, CC chemokine receptor 5;
TLC, thin layer chromatography.
(16) Butora, G.; Jiao, R.; Parsons, W. H.; Vicario, P. P.; Jin, H.; Ayala,
J. M.; Cascieri, M. A.; Yang, L. 3-Amino-1-alkyl-cyclopentane
r
2009 American Chemical Society
17
DOI: 10.1021/ml900009d ACS Med. Chem. Lett. 2010, 1, 14–18
|