G. Sbardella et al. / IL FARMACO 59 (2004) 463–471
471
[11] D.W. Fitzgerald, M.M. Morse, J.W. Pape, W.D. Johnson Jr, Active
tuberculosis in individuals infected with human immunodeficiency
virus after isoniazid prophylaxis, Clin. Infect. Dis. 31 (2000) 1495–
1497.
[25] N. Selvakumar, D. Srinivas, M.K. Khera, M.S. Kumar, R.N. Mamidi,
H. Sarnaik, C. Charavaryamath, B.S. Rao, M.A. Raheem, J. Das,
J. Iqbal, R. Rajagopalan, Synthesis of conformationally constrained
analogues of linezolid: structure-activity relationship (SAR) studies
on selected novel tricyclic oxazolidinones, J. Med. Chem. 45 (2002)
3953–3962.
[12] K.A.L. De Smet, Mycobacterium tuberculosis: beyond genome
sequencing, Trends Microbiol. 5 (1997) 429–431.
[26] V. Klimesova, J. Koci, K. Waisser, J. Kaustova, New benzimidazole
derivatives as antimycobacterial agents, Farmaco 57 (2002) 259–265.
[13] S. Jyoti, Taking toll of TB, Trends Microbiol. 9 (2001) 255.
[14] C.E.I. Barry, New horizons in the treatment of tuberculosis, Biochem.
Pharmacol. 54 (1997) 1165–1172.
[27] L.L. Gundersen, J. Nissen-Meyer, B. Spilsberg, Synthesis and antimy-
cobacterial activity of 6-arylpurines: the requirements for the N-9
substituent in active antimycobacterial purines, J. Med. Chem. 45
(2002) 1383–1386.
[15] M. Miletin, J. Hartl, Z. Odlerova, M. Machacek, Synthesis of some
2,6-bis(alkylthio)-4-pyridine carboxamides and carboxythioamides
and their antimycobacterial and antialgal activity, Pharmazie 52
(1997) 558–560.
[28] P. Sanna, A. Carta, L. Gherardini, M. Esmail, R. Nikookar, Synthesis
and antimycobacterial activity of 3-aryl-, 3-cyclohexyl- and
[16] G.A. Wachter, M.C. Davis, A.R. Martin, S.G. Franzblau, Antimyco-
bacterial activity of substituted isosteres of pyridine- and pyrazinecar-
boxylic acids, J. Med. Chem. 41 (1998) 2346–2348.
3-heteroaryl-
substituted-2-(1H(2H)-benzotriazol-1(2)-yl)prop-2-
enenitriles, prop-2-enamides and propenoic acids. II, Farmaco 57
(2002) 79–87.
[17] M. Artico, A. Mai, G. Sbardella, S. Massa, G. Lampis, D. Deidda,
R. Pompei, N-[4-(1,1’-biphenyl)methyl]-4-(4-thiomorpholinyl-
methyl) benzenamines as non-oxazolidinone analogues of antimyco-
bacterial U-100480, Bioorg. Med. Chem. Lett. 8 (1998) 1493–1498.
[29] M. Biava, BM 212 and its derivatives as a new class of antimycobac-
terial active agents, Curr. Med. Chem. 9 (2002) 1859–1869.
[30] H. Tomioka, Prospects for development of new antimycobacterial
drugs, J. Infect. Chemother. 6 (2000) 8–20 and references cited
therein.
[18] M. Artico, A. Mai, G. Sbardella, S. Massa, C. Musiu, S. Lostia,
F. Demontis, P. La Colla, Nitroquinolones with broad-spectrum anti-
mycobacterial activity in vitro, Bioorg. Med. Chem. Lett. 9 (1999)
1651–1656.
[31] D.R. Ashtekar, R. Costa-Pereira, K. Nagarajan, N. Vishvanathan,
A.D. Bhatt, W. Rittel, In vitro and in vivo activities of the nitroimida-
zole CGI 17341 against Mycobacterium tuberculosis, Antimicr.
Agents Chemother. 37 (1993) 183–186.
[19] P.B. Jones, N.M. Parrish, T.A. Houston, A. Stapon, N.P. Bansal,
J.D. Dick, C.A. Townsend,A New Class ofAntituberculosisAgents, J.
Med. Chem. 43 (2000) 3304–3314.
[32] B.T. O’Neill, F.R. Busch, R.S. Lehner, S. Richard, Preparation of
nicotinoylacetates and analogs as intermediates for quinolonecar-
boxylate antibacterials, Eur. Pat. Appl. (1991) 15 EP 449445 A2
19911002.
[20] A.K. Bakkestuen, L.L. Gundersen, G. Langli, F. Liu, J.M.J. Nolsoe,
9-Benzylpurines with inhibitory activity against Mycobacterium
tuberculosis, Bioorg. Med. Chem. Lett. 10 (2000) 1207–1210.
[21] R. Ragno, G.R. Marshall, R. Di Santo, R. Costi, S. Massa, R. Pompei,
M. Artico, Antimycobacterial pyrroles: synthesis, anti-
Mycobacterium tuberculosis activity and QSAR studies, Bioorg.
Med. Chem. 8 (2000) 1423–1432.
[33] V. Cecchetti,A. Fravolini, M. Palombo, C. Sissi, O. Tabarrini, P. Terni,
T. Xin, Potent 6-desfluoro-8-methylquinolones as new lead com-
pounds in antibacterial chemotherapy, J. Med. Chem. 39 (1996)
4952–4957.
[22] G. Pagani, M. Pregnolato, D. Ubiali, M. Terreni, C. Piersimoni,
F. Scaglione, F. Fraschini, A. Rodriguez Gascon, J.L. Pedraz Munoz,
Synthesis and in vitro anti-mycobacterium activity of N-alkyl-1,
2-dihydro-2-thioxo-3-pyridinecarbothioamides. Preliminary toxicity
and pharmacokinetic evaluation, J. Med. Chem. 43 (2000) 199–204.
[34] G. Klopman, D. Fercu, T.E. Renau, M.R. Jacobs, N-1-tert-butyl-
substituted quinolones: in vitro anti-Mycobacterium avium activities
and structure-activity relationship studies, Antimicrob. Agents
Chemother. 40 (1996) 2637–2643.
[35] T.E. Renau, J.P. Sanchez, J.W. Gage, J.A. Dever, M.A. Shapiro,
S.J. Gracheck, J.M. Domagala, Structure-activity relationships of the
quinolone antibacterials against mycobacteria: effect of structural
changes at N-1 and C-7, J. Med. Chem. 39 (1996) 729–735.
[23] K. Waisser, J. Gregor, L. Kubicova, V. Klimesova, J. Kunes,
M. Machacek, J. Kaustova, New groups of antimycobacterial agents:
6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones
and
6-chloro-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones, Eur. J.
Med. Chem. 35 (2000) 733–741.
[36] R. Pauwels, J. Balzarini, M. Baba, R. Snoeck, D. Sholds,
P. Herdewijn, J. Deshyter, E. De Clercq, Rapid and automated
tetrazolium-based colorimetric assay for the detection of anti-HIV
compounds, J. Virol. Methods 20 (1988) 309–321.
[24] S. Bosi, T. Da Ros, S. Castellano, E. Banfi, M. Prato, Antimycobacte-
rial activity of ionic fullerene derivatives, Bioorg. Med. Chem. Lett.
10 (2000) 1043–1045.