J.-P. Bouillon, M. Médebielle et al.
FULL PAPER
J. Org. Chem. 2011, 76, 5924–5935; q) C. Ghobril, J. Kister, R.
Baati, Eur. J. Org. Chem. 2011, 3416–3419; r) S. Dubois, F.
Rodier, R. Blanc, R. Rahmani, V. Héran, J. Thibonnet, L.
Commeiras, J.-L. Parrain, Org. Biomol. Chem. 2012, 10, 4712–
4719; s) A. Bidon-Chanal, A. Fuertes, D. Alonso, D. I. Pérez,
A. Martínez, F. J. Luque, M. Medina, Eur. J. Med. Chem. 2013,
60, 479–489; t) J. Rouleau, A. Korovitch, C. Lion, M. Hémadi,
N.-T. Ha-Duong, J.-M. El Hage Chahine, T. Le Gall, Tetrahe-
dron 2013, 69, 10842–10848; u) K. Katakawa, D. Yonenaga, T.
Terada, N. Aida, A. Sakamoto, K. Hoshino, T. Kumamoto,
Heterocycles 2014, 88, 817–825; v) R. Weixler, T. Bach, Synthe-
sis 2014, 46, 2663–2671.
a) S. Meunier, M. Hanédanian, M. Desage-El Murr, S. Nowac-
zyk, T. Le Gall, S. Pin, J.-P. Renault, D. Boquet, C. Crémignon,
C. Mioskowski, F. Taran, ChemBioChem 2005, 6, 1234–1241;
b) D. Habrant, S. Poigny, M. Ségur-Derai, Y. Brunel, B. Heur-
taux, T. Le Gall, A. Strehle, R. Saladin, S. Meunier, C. Mios-
kowski, A. Wagner, J. Med. Chem. 2009, 52, 2454–2464; c) B.
Nadal, S. A.-L. Thetiot-Laurent, S. Pin, J.-P. Renault, D.
Cressier, G. Rima, A. Le Roux, S. Meunier, A. Wagner, C.
Lion, T. Le Gall, Bioorg. Med. Chem. 2010, 18, 7931–7939; d)
H. Gao, W. Guo, Q. Wang, L. Zhang, M. Zhu, T. Zhu, Q. Gu,
W. Wang, D. Li, Bioorg. Med. Chem. Lett. 2013, 23, 1776–1778.
a) S. Antane, C. E. Caufield, W. Hu, D. Keenye, P. Labthavikul,
K. Morris, S. M. Naughton, P. J. Petersen, B. A. Rasmussen,
G. Singh, Y. Yang, Bioorg. Med. Chem. Lett. 2006, 16, 176–
180; b) T. S. Mansour, C. E. Caufield, B. Rasmussen, R. Copar,
G. Krishanmurthy, K. M. Morris, K. Svenson, J. Bard, C.
Smeltzer, S. Naughton, S. Antane, Y. Tang, A. Severin, D. Qua-
gliato, P. J. Petersen, G. Singh, ChemMedChem 2007, 2, 1414–
1417.
(Z)-5-[(1-Benzyl-1H-1,2,3-triazol-4-yl)(phenyl)methylene]-4-meth-
oxyfuran-2(5H)-one (109): Purification by silica gel column
chromatography (PE/AcOEt, 1:1) afforded 109 (66% yield) as a
1
yellow solid; m.p. 199 °C. H NMR (300 MHz, CDCl3): δ = 8.28
(s, 1 H), 7.40–7.30 (m, 10 H), 5.55 (s, 2 H), 5.26 (s, 1 H), 3.58 (s, 3
H) ppm. Selected 13C NMR (75 MHz, CDCl3): δ = 171.3, 167.5,
139.0, 134.5, 132.8, 130.3, 129.0, 128.6, 128.3, 127.9, 127.5, 126.0,
117.5, 90.0, 59.1, 54.1 ppm. HRMS (ESI+): calcd. for C21H18N3O3
[M + H]+ 360.1343; found 360.1346.
Single-Crystal X-ray Diffraction Analyses: Single-crystal X-ray
studies were carried out by using a Gemini diffractometer and the
related analysis software.[16] Absorption corrections based on the
crystal faces were applied to the data sets (analytical).[17] The struc-
tures were solved by direct methods using the SIR97 program[18]
combined with Fourier difference syntheses and refined against F
using reflections with [I/σ(I) Ͼ 3] by using the CRYSTALS pro-
gram.[19] All atomic displacement parameters for non-hydrogen
atoms were refined with anisotropic terms. The hydrogen atoms
were theoretically located on the basis of the conformation of the
supporting atom and refined by using the riding model.
[2]
[3]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, preparation of compounds, and 1H,
19F, and 13C NMR spectra.
Acknowledgments
This work was supported by the Agence Nationale de la Recherche
(ANR) (ANR-11-EMMA-04-QUINOLAC) and the Ministère de
l’Enseignement Supérieur et de la Recherche (Ph. D. fellowship to
S. I.). Additional support was provided by the Centre National de
la Recherche Scientifique (CNRS) and the Université Claude Ber-
nard Lyon 1 (UCBL). H. Y. and M. M. are grateful to the PICS
exchange program of CNRS (grant number 05871) for fostering
our international collaboration. The authors also thank Julien Bos-
son and Clément de Saint Jores for some materials syntheses and
Florian Albrieux, Christian Duchet, Nathalie Enriques, and Reyn-
ald Hélye from the Centre Commun de Spectrométrie de Masse
(CCSM) of Université Claude Bernard Lyon 1 for assistance and
access to the mass spectrometry facility.
[4]
[5]
For our preliminary communication, see: S. Iikawa, N. Chopin,
G. Pilet, J.-P. Bouillon, M. Médebielle, Tetrahedron Lett. 2013,
54, 4577–4581.
a) H.-D. Stachel, M. Jungkenn, C. Koser-Gnoss, H. Poschen-
rieder, J. Redlin, Liebigs Ann. Chem. 1994, 9, 961–964; b) Y.
Bourdreux, E. Bodio, C. Willis, C. Billaud, T. Le Gall, C. Mios-
kowski, Tetrahedron 2008, 64, 8930–8937; c) B. Nadal, J. Rou-
leau, H. Besnard, P. Thuéry, T. Le Gall, Tetrahedron 2011, 67,
2605–2611.
R. Selig, D. Schollmeyer, W. Albrecht, S. Laufer, Tetrahedron
2011, 67, 9204–9213.
a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; b)
S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633–
9695.
[6]
[7]
[8]
[9]
a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett.
1975, 16, 4467–4470; b) R. Chinchilla, C. Nájera, Chem. Rev.
2007, 107, 874–922; c) R. Chinchilla, C. Nájera, Chem. Soc.
Rev. 2011, 40, 5084–5121.
a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless,
Angew. Chem. Int. Ed. 2002, 41, 2596–2599; Angew. Chem.
2002, 114, 2708; b) M. Meldal, C. W. Tornøe, Chem. Rev. 2008,
108, 2952–3015.
[1] For reviews, see: a) B. L. Royles, Chem. Rev. 1995, 95, 1981–
2001; b) A. L. Zografos, D. Georgiadis, Synthesis 2006, 3157–
3188; c) R. Schobert, A. Schlenk, Bioorg. Med. Chem. 2008,
16, 4203–4221; d) D. Georgiadis, Tetronic Acids, in: Natural
Lactones and Lactams: Synthesis Occurrence and Biological Ac-
tivity (Ed: T. Janecki), Wiley-VCH, Weinheim, Germany, 2013,
p. 1–49; e) L. Vieweg, S. Reichau, R. Schobert, P. F. Leadlay,
R. D. Süssmuth, Nat. Prod. Rep. 2014, 31, 1554–1584; f) M. H.
Lacoske, E. A. Theodorakis, J. Nat. Prod. 2015, 78, 562–575;
g) H. Yanai, Green and Catalytic Methods for γ-Lactone Syn-
thesis in: Green Synthetic Approaches for Biologically Relevant
Heterocycles (Ed: G. Brahmachari), Elsevier, Amsterdam,
2015, p. 257–289; for selected papers, see: h) K. Rehse, J.
Lehmke, Arch. Pharm. 1985, 318, 11–14; i) A. C. Campbell,
M. S. Maidment, J. H. Pick, D. F. M. Stevenson, J. Chem. Soc.
Perkin Trans. 1 1985, 1567–1576; j) A. Pelter, R. I. H. Al-Bay-
ati, M. T. Ayoub, W. Lewis, P. Pardasini, R. Hansel, J. Chem.
Soc. Perkin Trans. 1 1987, 717–742; k) A. J. Poss, M. H. Bro-
dowski, Tetrahedron Lett. 1989, 30, 2505–2508; l) J. Uenishi,
R. Kawahama, O. Yonemitsu, J. Org. Chem. 1997, 62, 1691–
1701; m) A. S. Kende, J. I. M. Hernando, J. B. J. Milbank, Tet-
rahedron 2002, 58, 61–74; n) D. Albrecht, B. Basler, T. Bach, J.
Org. Chem. 2008, 73, 2345–2356; o) M. Fleck, T. Bach, Chem.
Eur. J. 2010, 167, 6015–6032; p) R. Weixler, J. P. Hehn, T. Bach,
[10]
[11]
[12]
J. Hou, X. Liu, J. Shen, G. Zhao, P. G. Wang, Expert Opin.
Drug Discov. 2012, 7, 489–501.
Compound 7: CAS 1272–43–1; X. Yin, Y. Li, Y. Zhu, X. Jing,
Y. Li, D. Zhu, Dalton Trans. 2010, 41, 9929–9935.
Compound 66: orthorhombic, Pbca, a = 15.375(1) Å, b =
12.338(1) Å,
c = 15.512(1) Å, V =
2942.6(2) Å3, refined
formula: C18H17NO3, molecular weight: 295.3 gmol–1, Z = 8,
d = 1.333 gcm–3, μ = 0.091 mm–1, R[I/σ(I) Ͼ 3] = 0.0413,
Rw[I/σ(I) Ͼ 3] = 0.0456, S = 1.13, Δρmax = 0.19 e-Å–3, Δρmin
= –0.18 e-Å–3, number refined parameters: 199, number reflec-
tions used: 2407. CCDC-1059356 (for 66) contains the supple-
mentary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Compound 78: monoclinic, P21/n, a = 12.2321(9) Å, b =
[13]
7.9932(5) Å,
c = 18.823(1) Å, β = 101.404(6)°, V =
1804.1(2) Å3, refined formula: C20H17Br1O5, molecular weight:
6268
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 6259–6269