Published on Web 04/29/2006
Self-Assembly, Structural, and Retrostructural Analysis of
Dendritic Dipeptide Pores Undergoing Reversible Circular to
Elliptical Shape Change
Mihai Peterca,‡ Virgil Percec,*,† Andre´s E. Dulcey,† Sami Nummelin,†
Stephanie Korey,† Monica Ilies,† and Paul A. Heiney‡
Contribution from the Roy & Diana Vagelos Laboratories, Department of Chemistry,
UniVersity of PennsylVania, Philadelphia, PennsylVania 19104-6323, and Department of Physics
and Astronomy, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104-6396
Received February 19, 2006; E-mail: percec@sas.upenn.edu
Abstract: The synthesis of dendritic dipeptides (4-3,4-3,5-4)12G2-CH2-Boc-L-Tyr-L-Ala-OMe and (4-3,
4-3,5-4)12G2-CH2-Boc-D-Tyr-D-Ala-OMe is described. These dendritic dipeptides self-assemble into porous
elliptical and circular columns that in turn self-organize into centered rectangular columnar and hexagonal
columnar periodic arrays. The transition from porous elliptical to porous circular columns is mediated in a
reversible or irreversible way by the thermal history of the sample. A method to determine the dimensions
of hollow elliptical and circular columns by the reconstruction of the small-angle powder X-ray diffractograms
of the centered rectangular or hexagonal columnar lattices was elaborated. This technique together with
wide-angle X-ray experiments performed on aligned fibers provided access to the structural and
retrostructural analysis of elliptical supramolecular pores. This procedure is general and can be adapted
for the determination of the dimensions of pores of any columnar shape.
Introduction
solution and in solid state. This behavior limits their structural
analysis by combinations of solution and solid state comple-
Natural pore-forming proteins and their remodeled structures
exhibit a diversity of biological and biologically inspired
functions such as transmembrane channels,1 viral helical coats,2
reversible encapsulation,3 stochastic sensing,4 and patogenic5
and antibiotic activity.6 Natural porous proteins are stable in
solution and in solid state. Various synthetic strategies to porous
and tubular supramolecular assemblies have been elaborated.7
However, with few exceptions,8 porous protein mimics do not
assemble into periodically ordered structures that are stable in
mentary techniques. Our laboratory reported the self-assembly
of amphiphilic dendritic dipeptides to produce helical pores that
are stable both in solution and in solid state.9 For the same
dendron and dipeptide, the internal structure and stability of
the pore are programmed by the stereochemistry10a and the
protective groups10b of the dipeptide and by the number of the
methylenic units in the alkyl groups attached to the periphery
of the dendron.10c This process is cooperative and involves
allosteric regulation.11 The same principles may apply to the
self-assembly of dendritic dipeptides based on different den-
drons12 and dipeptides.
† Roy & Diana Vagelos Laboratories, Department of Chemistry, Uni-
versity of Pennsylvania.
‡ Department of Physics and Astronomy, University of Pennsylvania.
(1) (a) MacKinnon, R. Angew. Chem., Int. Ed. 2004, 43, 4265-4277. (b) Agre,
P. Angew. Chem., Int. Ed. 2004, 43, 4278-4290.
(8) (a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.;
Khazanovich, N. Nature 1993, 366, 324-327. (b) Petitjean, A.; Cuccia,
L. A.; Lehn, J.-M.; Nierengarten, H.; Schmutz, M. Angew. Chem., Int. Ed.
2002, 41, 1195-1198. (c) Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D.
Chem.sEur. J. 1999, 5, 3471-3481. (d) Schmitt, J.-L.; Stadler, A.-M.;
Kyritsakas, N.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 1598-1624. (e)
Schmitt, J.-L.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 3417-3426.
(9) (a) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal,
J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.;
Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764-
768. (b) Rouhi, M. Chem. Eng. News 2004, 82 (33), 4. (c) Borman, S.
Chem. Eng. News 2004, 82 (51), 53-61.
(2) (a) Klug, A. Angew. Chem., Int. Ed. Engl. 1983, 22, 565-582. (b) Klug,
A. Philos. Trans. R. Soc. London, Ser. B 1999, 354, 531-535.
(3) Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida,
T. Nature 2003, 423, 628-632.
(4) Bayley, H.; Cremer, P. S. Nature 2001, 413, 226-230.
(5) Gouaux, E. J. Struct. Biol. 1998, 121, 110-122.
(6) Wallace, B. A. Biophys. J. 1986, 49, 295-306.
(7) (a) Nolte, R. J. M.; van Beijnen, A. J. M.; Neevel, J. G.; Zwikker, J. W.;
Verkley, A. J.; Drenth, W. Isr. J. Chem. 1984, 24, 297-301. (b) Jullien,
L.; Lehn, J.-M. Tetrahedron Lett. 1988, 29, 3803-3806. (c) Cross, G. G.;
Fyles, T. M.; James, T. D.; Zojaji, M. Synlett 1993, 7, 449-460. (d) Gokel,
G. W.; Ferdani, R.; Liu, J.; Pajewski, R.; Shabany, H.; Uetrecht, P. Chem.s
Eur. J. 2001, 7, 33-39. (e) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri,
M. R. Angew. Chem., Int. Ed. 2001, 40, 988-1011. (f) Sakai, N.; Mareda,
J.; Matile, S. Acc. Chem. Res. 2005, 38, 79-87. (g) Rosselli, S.; Ramminger,
A.-D.; Wagner, T.; Silier, B.; Wiegand, S.; Ha¨ussler, W.; Lieser, G.;
Scheumann, V.; Ho¨ger, S. Angew. Chem., Int. Ed. 2001, 40, 3138-3141.
(h) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem.
ReV. 2001, 101, 3893-4012. (i) Fenniri, H.; Deng, B.-L.; Ribbe, A. E. J.
Am. Chem. Soc. 2002, 124, 11064-11072. (j) Hecht, S.; Khan, A. Angew.
Chem., Int. Ed. 2003, 42, 6021-6024. (k) Couet, J.; Jeyaprakash, J. D.;
Samuel, S.; Kopyshev, A.; Santer, S.; Biesalski, M. Angew. Chem., Int.
Ed. 2005, 44, 3297-3301.
(10) (a) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Ladislaw, J.; Rosen,
B. M.; Edlund, U.; Heiney, P. A. Angew. Chem., Int. Ed. 2005, 44, 6516-
6521. (b) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska,
M. J.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902-17909. (c) Percec,
V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Nummelin, S.; Sienkowska, M.
J.; Heiney, P. A. Proc. Natl. Acad. Sci. U.S.A 2006, 103, 2518-2523.
(11) (a) Monod, J.; Changeux, J.-P.; Jacob, F. J. Mol. Biol. 1963, 6, 306-329.
(b) Perutz, M. Mechanisms of CooperatiVity and Allosteric Regulation in
Proteins; Cambridge University Press: Cambridge, U.K., 1990. (c) Evans,
P. R. Curr. Opin. Struct. Biol. 1991, 1, 773-779.
(12) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Miura, Y.; Edlund, U.;
Heiney, P. A. Aust. J. Chem. 2005, 58, 472-482.
9
10.1021/ja0611902 CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 6713-6720
6713