the solution was irradiated with a 125 W UV lamp for 20 min.
Complex 2 (0.070 g, 0.0971 mmol) was added as a solid in one
portion. The resulting mixture was stirred for 24 h followed
by evaporation of the solvent under reduced pressure. The
dark red residue was dissolved in the minimum volume of
dichloromethane (3 cm3) and diethyl ether (50 cm3) was added
slowly to precipitate the product as a brick red powder. Yield:
0.068 g, 76%. 1H NMR (CD2Cl2): d 7.48–7.36 (m, 10 H,
4 H, aromatic) 2.83 (sept, 1 H, CHMe2) 2.40 (s, 3 H, CH3) and
1.30 (d, (CH3)2CH, 6 H). Selected IR data (KBr, cm−1): 851s
=
m(C Se), 277w, 245w m(Os–Se).
X-Ray crystallography
Table 4 lists details of data collections and refinements for 2
and 8. Data were collected at 125 K using a Bruker SMART
diffractometer with graphite monochromated Mo radiation.
Intensities were corrected for Lorentz-polarisation and for
absorption. The structures were solved by the heavy atom
method or by direct methods. The positions of the hydrogen
atoms were idealised. Refinements were by full-matrix least
squares based on F2 using SHELXTL.13
3
2
aromatic) and 1.59 (d, 12 H, J(195Pt–1H) 36 Hz, J(31P–1H)
12 Hz, PMe).
[Pt(PMe2Ph)2(CSe3)Mo(CO)5] (10). This was prepared in
the same fashion as platinum complex 9 using [Mo(CO)6]
(0.022 g, 0.0833 mmol) and 2 (0.060 g, 0.0833 mmol) to give
the product as a brown powder. Yield: 0.020 g, 25%. 1H NMR
(CD2Cl2): d 7.47–7.36 (m, 10 H, aromatic) and 1.58 (d, 12 H,
3J(195Pt–1H) 36 Hz, 2J(31P–1H) 11 Hz, PMe).
CCDC reference numbers 220004, 224471 and 253757.
See http://www.rsc.org/suppdata/dt/b4/b416356g/ for cry-
stallographic data in CIFor other electronic format.
[Pt(PMe2Ph)2(CSe3)W(CO)5] (11). This was prepared in the
same fashion as platinum complex 9 using [W(CO)6] (0.034 g,
0.0972 mmol) and 2 (0.070 g, 0.0972 mmol) to give the product
References
1 J. P. Fackler, Jr. and D. Coucouvanis, J. Am. Chem. Soc., 1966, 8,
3913.
2 O. Kolb and H. Werner, J. Organomet. Chem., 1984, 268, 49.
3 G. Von Gattow and M. Drager, Z. Anorg. Allgem. Chem., 1966, 348,
229.
4 (a) H. G. Raubenheimer, G. J. Kruger and A. Lombard, J. Organomet.
Chem., 1982, 240, C11; (b) H. G. Raubenheimer, S. Lotz, G. J. Kruger,
A. van A. Lombard and J. C. Viljoen, J. Organomet. Chem., 1987,
336, 349; (c) H. G. Raubenheimer, G. J. Kruger and H. W. Viljoen,
J. Chem. Soc., Dalton. Trans., 1985, 1963.
5 (a) P. S. Belton, I. P. Parkin, D. J. Williams and J. D. Woollins, J. Chem.
Soc., Chem. Commun., 1988, 1479; (b) I. P. Parkin, A. M. Z. Slawin,
D. J. Williams and J. D. Woollins, J. Chem. Soc., Chem. Commun.,
1989, 58; (c) C. A. O’Mahoney, I. P. Parkin, D. J. Williams and J. D.
Woollins, J. Chem. Soc., Dalton Trans., 1989, 1179; (d) I. P. Parkin,
A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron,
1989, 8, 835; (e) C. A. O’Mahoney, I. P. Parkin, D. J. Williams and
J. D. Woollins, Polyhedron, 1989, 8, 2215; (f) C. A. O’Mahoney, I. P.
Parkin, D. J. Williams and J. D. Woollins, Polyhedron, 1989, 8, 1979;
(g) P. F. Kelly, I. P. Parkin, A. M. Z. Slawin, D. J. Williams and
J. D. Woollins, Angew. Chem., Int. Ed. Engl., 1989, 28, 1047; (h) I. P.
Parkin, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem.
Soc., Chem. Commun., 1989, 1060; (i) S. M. Aucott, A. M. Z. Slawin
and J. D. Woollins, Polyhedron, 2000, 19, 499.
6 P. K. Khanna, C. P. Morley, M. B. Hursthouse, K. M. A. Malik and
O. W. Howarth, Heteroat. Chem., 1995, 6, 519.
7 G. Matsubayashi and K. Akiba, J. Chem. Soc., Dalton Trans., 1990,
115.
8 K. C. Huang, Y. C. Tsai, G. H. Lee, S. M. Peng and M. Shieh, Inorg.
Chem., 1997, 36, 4421.
9 C. J. Burchell, S. M. Aucott, H. L. Milton, A. M. Z. Slawin and J. D.
Woollins, Dalton Trans., 2004, 369.
10 (a) W. H. Pan, J. P. Fackler, Jr. and H. W. Chen, Inorg. Chem., 1981,
20, 856; (b) D. Ives, R. W. Pittman and W. J. Wardlaw, J. Chem. Soc.,
1947, 1080.
1
as a brown powder. Yield: 0.043 g, 42%. H NMR (CD2Cl2):
d 7.54–7.30 (m, 10 H, aromatic) and 1.57 (d, 12 H, 3J(195Pt–1H)
36 Hz, 2J(31P–1H) 12 Hz, PMe).
[{Rh(CSe3)(g5-C5Me5)}2] (12). This was prepared in the
5
same fashion as platinum complex 1 using [{RhCl(l-Cl)(g -
C5Me5)}2] (0.080g, 0.129 mmol) and carbon diselenide (4 cm3
10% solution in dichloromethane, 0.530 mmol) to give the
1
product as a brick red powder. Yield: 0.106 g, 84%. H NMR
5
(CD2Cl2): d 1.85–1.73 (m, 30 H, g -C5Me5). Selected IR data
−1
=
(KBr, cm ): 851 m(C Se), 281w m(Rh–Se).
[{Ir(CSe3)(g5-C5Me5)}2] (13). This was prepared in the same
5
fashion as platinum complex 1 using [{IrCl(l-Cl)(g -C5Me5)}2]
(0.080g, 0.104 mmol) and carbon diselenide (4 cm3 10% solution
in dichloromethane, 0.530 mmol) to give the product as a brown
powder. Yield: 0.065 g, 54%. 1H NMR (CD2Cl2): d 1.94–1.64 (m,
5
−1
=
30 H, g -C5Me5). Selected IR data (KBr, cm ): 857s m(C Se),
279w, 246w m(Ir–Se).
[{Ru(CSe3)(g6-p-MeC6H4 Pr)}2] (14). This was prepared in
i
6
the same fashion as platinum complex 1 using [{RuCl(l-Cl)(g -
i
p-MeC6H4 Pr)}2] (0.140g, 0.229 mmol) and carbon diselenide
(6 cm3 10% solution in dichloromethane, 0.795 mmol) to give
the product as a brown powder. Yield: 0.096 g, 43%. 1H NMR
3
(CD2Cl2): d 5.61 and 5.47 (AB system, J(1H–1H) 6 Hz, 4 H,
aromatic) 2.84 (sept, 1 H, CHMe2) 2.28 (s, 3 H, CH3) and 1.19
−1
=
(d, (CH3)2CH, 6 H). Selected IR data (KBr, cm ): 849s m(C Se),
274w, 247w m(Ru–Se).
[{Os(CSe3)(g6-p-MeC6H4 Pr)}2] (15). This was prepared in
i
6
the same fashion as platinum complex 1 using [{OsCl(l-Cl)(g -
11 C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29,
i
p-MeC6H4 Pr)}2] (0.080 g, 0.101 mmol) and carbon diselenide
228.
(4 cm3 10% solution in dichloromethane, 0.530 mmol) to give
12 M. A. Bennett, T. N. Huang, T. W. Matheson and A. R. Smith, Inorg.
Synth., 1982, 21, 74.
13 SHELXTL, Bruker AXS, Madison, WI, 1999.
1
the product as a dark brown powder. Yield: 0.034 g, 29%. H
3
NMR (CD2Cl2): d 6.01 and 5.86 (AB system, J(1H–1H) 6 Hz,
D a l t o n T r a n s . , 2 0 0 5 , 7 3 5 – 7 3 9
7 3 9