10.1002/cctc.201900438
ChemCatChem
FULL PAPER
[1] For selected reviews, see: a) T. Hiyama, in Organofluorine Compounds,
(Ed.: H. Yamamoto), Springer-Verlag, Berlin Heidelberg, 2000; b) in
Fluorine in Medicinal Chemistry and Chemical Biology, (Ed.: I. Ojima),
Wiley, Chichester, 2009.
[2] For selected reviews, see: a) M. Schlosser, Angew. Chem. 2006, 118,
5558 – 5572; Angew. Chem. Int. Ed. 2006, 45, 5432-5446; b) K. Müller,
C. Faeh, F. Diederich, Science. 2007, 317, 1881-1886; c) W. K.
Hagmann, J. Med. Chem. 2008, 51, 4359-4369; d) J. Wang, M.
Sꢀnchez-Rosellꢁ, J. L. Aceꢂa, C. D. Pozo, A. E. Sorochinsky, S. Fustero,
V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432−2506; e) Y. Zhou,
J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceꢂa, V. A. Soloshonok, K.
Izawa, H. Liu, Chem. Rev. 2016, 116, 422-518.
[3] a) J.-J. Ma, W.-B. Yi, G.-P. Lu, C. Cai, Adv. Synth. Catal. 2015, 357,
3447–3452; b) P. Xu, A. Abdukader, K. Hu, Y. Cheng, C. Zhu, Chem.
Commun. 2014, 50, 2308-2310; c) Z. He, T. Luo, M. Hu, Y. Cao, J. Hu,
Angew. Chem. 2012, 124, 4010–4013; Angew. Chem. Int. Ed. 2012, 51,
3944–3947; d) L. He, X. Yang, G. C. Tsui, J. Org. Chem. 2017, 82,
6192−6201; e) S. P. Midya, J. Rana, T. Abraham, B. Aswina, E.
Balaraman, Chem. Commun. 2017, 53, 6760-6763; f) P. Huang, Y. Li, X.
Fu, R. Zhang, K. Jin, W. Wang, C. Duan, Tetrahedron Lett 2016, 57,
4705-4708; g) S.-L. Zhang, C. Xiao, J. Org. Chem. 2018, 83,
10908−10915; h) Q.-Y. Lin, X.-H. Xu, F.-L. Qing, J. Org. Chem. 2014, 79,
10434−10446; i) F.-G. Zhang, N. Lv, Y. Zheng, J.-A. Ma, Chin. J. Chem.
2018, 36, 723-730; j) Y. Yasu, T. Koike, M. Akita, Chem. Commun.
2013, 49, 2037-2039; k) N. Iqbal, S. Choi, E. Kim, E. J. Cho, J. Org.
Chem. 2012, 77, 11383−11387; l) A. T. Parsons, T. D. Senecal, S. L.
Buchwald, Angew. Chem. 2012, 124, 3001–3004; Angew. Chem. Int. Ed.
2012, 51, 2947–2950; m) Y. Zhao, Y. Zhou, C. Zhang, H. Wang, J. Zhao,
K. Jin, J. Liu, J. Liu, J. Qu, Org. Biomol. Chem. 2017, 15, 5693–5700; n)
E. J. Cho, S. L. Buchwald, Org. Lett. 2011, 13, 6552-6555; o) Y. Lu, C.
Huang, C. Liu, Y. Guo, Q.-Y. Chen, Eur. J. Org. Chem. 2018, 2082–2090;
p) L.-H. Wu, K. Zhao, Z.-L. Shen, T.-P. Loh, Org. Chem. Front. 2017, 4,
1872–1875.
Scheme 2. Proposed Reaction Mechanism
Conclusions
In summary, an electrochemical decarboxylative trifluoromethyl-
lation of cinnamic acids with the Langlois reagent to synthesize
vinyl trifluoromethyl compounds has been developed. With a wide
substrate scope and an excellent functional-group tolerance, this
protocol proceeds smoothly under ambient conditions and refra-
ins from using any metal and chemical oxidants. Mechanism
insights reveal that this reaction goes through a radical pathway.
[4] a) S. Barata-Vallejo, B. Lantano, A. Postigo, Chem. Eur. J. 2014, 20,
16806–16829; b) J. Charpentier, N. Frꢃh, A. Togni, Chem. Rev. 2015,
115, 650−682.
[5] a) T. Umemoto, Chem. Rev. 1996, 96, 1757-1778; b) C. Zhang, Org.
Biomol. Chem. 2014, 12, 6580–6589.
Experimental Section
[6] a) G. K. Surya Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757-786; b)
L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513−1522; c) X. Liu, C.
Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115, 683−730.
Synthesis of (E)-1-methoxy-4-(3,3,3-trifluoroprop-1-en-1-yl)benzene
(3a)
[7] a) M. Tordeux, B. Langlois, C. Wakselman, J. Org. Chem. 1989, 54,
2452-2453; b) C. Zhang, Adv. Synth. Catal. 2014, 356, 2895-2906; c) Y.
Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G.
Blackmond, P. S. Baran, PNAS. 2011, 108, 14411–14415; d) Y. Fujiwara,
J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D.
G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494−1497;
e) H. Guyon, H. Chachignon, D. Cahard, Beilstein J. Org. Chem. 2017,
13, 2764–2799.
Into a round bottom flask, p-methoxycinnamic acid 1a (0.2 mmol, 1.0
equiv), Langlois reagent 2 (0.6 mmol, 3.0 equiv), and trifluoroethanol (TFE)
(0.1 mmol, 0.5 equiv) were dissolved in 5 mL 1,2-dimethoxyethane/H2O
(v:v = 4:1) with LiClO4 (0.1 M) as an electrolyte. The resulting solution was
electrolyzed with a carbon felt anode (1 × 1.5 cm2) and a Pt foil cathode (1
× 1.5 cm2) under a constant current (5 mA) at room temperature for 8 h.
After the electrolysis, the reaction mixture was extracted with CH2Cl2 (3 ×
10 mL). The combined organic layer was washed with brine (10 mL), dried
over Na2SO4, filtered and concentrated in vacuo. The resulting mixture
was purified by silica gel column chromatography to afford the desired
product 3a.
[8] For recent representative papers, see: a) Y. Ye, S. A. Künzi, M. S.
Sanford, Org. Lett. 2012, 14, 4979-4981; b) Y. Li, L. Wu, H. Neumann,
M. Beller, Chem. Commun. 2013, 49, 2628-2630; c) D. J. Wilger, N. J.
Gesmundo, D. A. Nicewicz, Chem. Sci. 2013, 4, 3160–3165; d) L. Li, X.
Mu, W. Liu, Y. Wang, Z. Mi, C.-J. Li, J. Am. Chem. Soc. 2016, 138,
5809−5812; e) Y. Zhang, X. Han, J. Zhao, Z. Qian, T. Li, Y. Tang, H.‐Y.
Zhang, Adv. Synth. Catal. 2018, 360, 2659 – 2667; f) C. Liu, Q. Lu, Z.
Huang, J. Zhang, F. Liao, P. Peng, A. Lei, Org. Lett. 2015, 17,
6034−6037; g) X. Pan, H. Xia, J. Wu, Org. Chem. Front. 2016, 3, 1163–
1185; h) T. Koike, M. Akita, Top Catal. 2014, 57, 967–974.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (Grant Nos. 21672074 and 21372089) for financial support.
[9] J.-B. Tommasino, A. Brondex, M. Médebielle, M. Thomalla, B.R. Langlois,
T. Billard, Synlett 2002, 10, 1697-1699.
[10] A. G. O’Brien, A. Maruyama, Y. Inokuma, M. Fujita, P. S. Baran, D. G.
Blackmond, Angew.Chem. 2014, 126, 12062–12065; Angew. Chem. Int.
Ed. 2014, 53, 11868–11871.
[11] W. Jud, C. O. Kappe, D. Cantillo, Chem. Eur. J. 2018, 24, 17234–17238.
[12] K.-Y. Ye, G. Pombar, N. Fu, G. S. Sauer, I. Keresztes, S. Lin, J. Am.
Chem. Soc. 2018, 140, 2438–2441.
Keywords: decarboxylation • electrochemistry • external
chemical oxidant-free • metal-free• trifluoromethylation
This article is protected by copyright. All rights reserved.