4934
K. Gingras et al. / Bioorg. Med. Chem. Lett. 14 (2004) 4931–4934
1991, 32, 1367. Spectral characterization of the product
from addition of allyl magnesium chloride to (S)-7: 1H
NMR (400MHz, CDCl3) signals for the major isomer are
as follows: d 0.04 (s, 6H), 0.74–1.55 (m, 19H), 1.63 (m,
1H), 1.80 (m, 2H), 1.93 (m, 1H), 2.18–2.40 (m, 3H), 3.38
(d, 2H, J = 6.4Hz), 3.92 (m, 1H), 5.10 (m, 2H), 5.80 (m,
1H), 7.20–7.40 (m, 5H). Distinct signals for the minor
isomer include: d 0.06 (s, 6H), 3.42 (d, 2H, J = 7.1Hz),
5.62 (m, 1H); 13C NMR (100MHz, CDCl3) d 146.2, 135.9,
128.1, 126.7, 126.5, 116.6, 68.7, 65.6, 58.5, 55.2, 40.8, 40.5,
34.5, 29.5, 28.7, 28.2, 25.8, 24.9, 18.2, ꢀ5.5; MS (FAB) m/z
402.4 ([MH+]).
moted neurite outgrowth. Although compound (ꢀ)-3
demonstrated a significant effect on Rho kinase activity,
it failed to promote neurite outgrowth and caused cell
rounding instead.
The ability of compounds (+)- and (ꢀ)-1 to promote
neurite outgrowth was examined on two inhibitory sub-
strates, myelin-associated glycoprotein (MAG) and
myelin (Fig. 2). After 24h on MAG or myelin, few
NG108-15 cells showed neurites. However, following
treatment with either (+)- or (ꢀ)-1, the percentage of
NG108-15 cells with neurites significantly increased as
compared to untreated cells plated on MAG or myelin.
Both (+)- and (ꢀ)-1 helped overcome the inhibitory
effect of MAG and myelin on neurite outgrowth promo-
tion.
13. Bringmann, G.; Geisler, J.-P.; Geuder, T.; Kunkel, G.;
¨
Kinzinger, L. Liebigs Ann. Chem. 1990, 795.
14. (a) Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.;
Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64,
2564; (b) Dettwiler, J. E.; Lubell, W. D. J. Org. Chem.
2003, 68, 177.
15. (a) Avenoza, A.; Busto, J. H.; Peregrina, J. M.; Rodriguez,
F. J. Org. Chem. 2002, 67, 4241; (b) Poulain, R. F.; Tartar,
Stereochemistry at the amine-bearing center had a lim-
ited influence on the biological activity of compounds
1 and 2; both enantiomers possessed the ability to inhi-
bit Rho kinase activity and promote neurite outgrowth.
In contrast, the octyl analog (ꢀ)-3 did not stimulate
neurite outgrowth and induced cell rounding, suggesting
cell toxicity. Although no clear relationship between
Rho kinase inhibition and neurite outgrowth promotion
was established, several Rho kinase inhibitors did pro-
mote neurite outgrowth. Based on the influences of
modifications of the stereochemistry and alkyl chain
length of compounds 1–3, opportunity may exist to
modify these features to create cell permeable com-
pounds with improved activity.
´
A. L.; Deprez, B. P. Tetrahedron Lett. 2001, 42,
1495.
16. Cluzeau, J.; Lubell, W. D. J. Org. Chem. 2004, 69,
1504.
17. Stereochemical assignment for the alcohol 12 was made
based on the product from the addition of (R,R)-
diisopropyl-2-allyl-1,3,2-dioxaborolane-4,5-dicarboxylate
to cyclohexane carboxaldehyde, which produced predom-
inantly the (S)-alcohol (dr 93:7): (a) Roush, W. R.;
Hoong, L. K.; Palmer, M. A. J.; Park, J. C. J. Org.
Chem. 1990, 55, 4109; (b) Roush, W. R.; Walts, A. E.;
Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186; (c)
Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem.
Soc. 1990, 112, 6248.
18. Nicolaou, K. C.; Caulfield, T.; Kataoka, H.; Kumazawa,
T. J. Am. Chem. Soc. 1988, 110, 7910.
References and notes
19. (a) Blackwell, H. E.; OꢀLeary, D. J.; Chatterjee, A. K.;
Washenfelder, R. A.; Bussmann, D. A.; Grubbs, R. H. J.
Am. Chem. Soc. 2000, 122, 58; (b) Trnka, T. M.; Grubbs,
R. H. Acc. Chem. Res. 2001, 34, 18; (c) Randl, S.; Blechert,
S. J. Org. Chem. 2003, 68, 8879.
20. The isomeric ratio 75:25 trans:cis was assigned by
integration of isomeric signals at 5.26 and 5.35 and 5.47
and 5.57ppm. The major isomer was assigned the trans
isomer based on the 15.3Hz coupling constant for the
olefin protons.
1. Noble, M. E. M.; Endicott, J. A.; Johnson, L. N. Science
2004, 303, 1800.
2. Shimokawa, H.; Iinuma, H.; Kishida, H.; Nakashima, M.;
Kato, K. Circulation 2001, 104, 2843.
3. Ishizaki, T.; Uehata, M.; Tamechika, I.; Keel, J.; Nono-
mura, K.; Maekawa, M.; Narumiya, S. Mol. Pharmacol.
2000, 57, 976.
4. Davies, S. P.; Reddy, H.; Caivano, M.; Cohen, P.
Biochem. J. 2000, 351, 95.
5. McKerracher, L.; Winton, M. J. Neuron 2002, 36, 345.
6. Dergham, P.; Ellezam, B.; Essagian, C.; Avedissian, H.;
Lubell, W. D.; McKerracher, L. J. Neurosci. 2002, 22,
6570.
7. Arita, M.; Saito, T.; Okuda, H.; Sato, H.; Uehata, M. U.S.
Patent 5,478,838, 1995.
8. Muro, T.; Seki, T.; Abe, M.; Inui, J.; Sato, H. U.S. Patent
4,997,834, 1991.
9. Cristau, H.-J.; Monbrun, J.; Tillard, M.; Pirat, J.-L.
Tetrahedron Lett. 2003, 44, 3183.
10. Bloch, R. Chem. Rev. 1998, 98, 1407.
11. The 9:1 diastereomeric ratio observed after coupling 1 to
N-(toluenesulfonyl)prolyl chloride was in close agreement
with the 93:7 dr obtained in the addition of MeMgBr to a-
methylbenzyl cyclohexylaldimines: (a) Alvaro, G.; Savoia,
D.; Valentinetti, M. R. Tetrahedron 1996, 52, 571; (b)
Boga, C.; Savoia, D.; Umani-Ronchi, A. Tetrahedron:
Asymmetry 1990, 1, 291.
12. Alvaro, G.; Boga, C.; Savoia, D.; Umani-Ronchi, A. J.
Chem. Soc., Perkin Trans. 1 1996, 875; (b) Bocoum, A.;
Boga, C.; Savoia, D.; Umani-Ronchi, A. Tetrahedron Lett.
21. In the case of 2 the Boc group was removed before
hydrogenation; with 3 the hydrogenation preceded Boc
deprotection.
22. The physical properties for 1 were the same as observed in
Ref. 5: 13C NMR (100MHz, CD3OD) d 178.2, 155.5,
143.1, 115.8, 53.1, 46.6, 41.7, 29.5 (2C), 28.9, 27.6, 15.9.
Specific rotation concentrations are reported in g/100mL:
(+)-2: 1H NMR (400MHz, CD3OD) d 1.01 (t, 3H,
J = 7.1Hz), 1.25–1.65 (m, 10H), 1.88 (m, 2H), 2.10 (d,
2H, J = 12Hz), 2.54 (m, 1H), 3.08 (m, 1H), 8.21 (d, 2H,
J = 7.31Hz), 8.60 (d, 2H, J = 7.3Hz); 13C NMR
(100MHz, CD3OD) d 178.5, 155.9, 142.1, 114.8, 56.2,
20
45.7, 41.4, 39.4, 31.9, 28.7, 27.6, 27.5, 18.6, 13.2; ½aꢁD 2:7
(c 0.58, MeOH); HRMS calcd for C16H26NO3 ([MH+]):
276.2075. Found: 276.2079.
20
Compound 2: ½aꢁD ꢀ 2:7 (c 0.4, MeOH); HRMS calcd for
C16H26NO3 ([MH+]): 276.2075. Found: 276.2081.
Compound 3: 1H NMR (400MHz, CD3OD) d 0.93 (t, 3H,
J = 7Hz), 1.40 (m, 15H), 1.65 (m, 5H), 1.92 (m, 2H), 2.08
(d, 2H, J = 14Hz), 2.49 (m, 1H), 3.08 (m, 1H), 8.15 (d, 2H,
20
J = 6.5Hz), 8.58 (d, 2H, J = 6.8Hz); ½aꢁD ꢀ21:6
(c 0.125, MeOH); MS (TIC) m/z 346.2 ([MH+]).