J. E. Na et al. / Tetrahedron Letters 45 (2004) 7435–7440
7439
J. S.; Pawlak, K.; Bruening, R. L.; Tarbet, B. J. Chem.
Rev. 1992, 92, 1261; (k) Murakami, Y.; Kikuchi, J.-i.;
Hisaeda, Y.; Hayashida, O. Chem. Rev. 1996, 96, 721; (l)
Diederich, F.; Griebel, D. J. Am. Chem. Soc. 1984, 106,
8037.
27h) gave 4b (7%) and desired intermediate 5b in 32%
yield. The reaction of 5b and 3b under dilute conditions
afforded 6b in 15% isolated yield. The structures of 6a
1
and 6b were also confirmed by H, 13C NMR, MAL-
DI-TOF mass.11 Unfortunately, our attempts to grow
single crystals of 6a and 6b failed at this stage presum-
ably due to their conformational flexibility.
5. For the synthesis and binding properties of water-insol-
uble cyclophanes, see: (a) Saigo, K.; Lin, R.-J.; Kubo, M.;
Youda, A.; Hasegawa, M. J. Am. Chem. Soc. 1986, 108,
1996; (b) Masci, B. Tetrahedron 1995, 51, 5459; (c)
Casnati, A.; Jacopozzi, P.; Pochini, A.; Ugozzoli, F.;
Cacciapaglia, R.; Mandolini, L.; Ungaro, R. Tetrahedron
1995, 51, 591; (d) Colquhoun, H. M.; Williams, D. J.; Zhu,
Z. J. Am. Chem. Soc. 2002, 124, 13346.
We expected that the cyclophanes 4a, 4b, 6a, and 6b
could recognize the quaternary ammonium cations by
the cation-p interaction6a,7a,d as well as some non-polar
compounds such as biphenyl or naphthalene with the
aid of p–p interaction.4l,6b,c However, unfortunately,
we could not find any suitable guest until now. We
carried out NMR binding studies with some guest
molecules including N-methylpyridinium iodide, benzyl-
trimethylammonium bromide, p-cresol, biphenyl, naph-
thalene, anthracene, azobenzene. But, the expected
upfield shifts of guest molecules in NMR spectra were
negligible in all the cases, which suggested insufficient
inclusion into the host molecule.12 Further studies on
the binding properties of the cyclophanes and growing
of the crystals are under progress.
6. For the synthesis and binding properties of cyclophanes
derived from bisphenols, see: (a) Cattani, A.; Cort, A. D.;
Mandolini, L. J. Org. Chem. 1995, 60, 8313; (b) Nissinen,
M.; Cort, A. D.; Amabile, S.; Mandolini, L.; Rissanen, K.
J. Inclusion Phenom. Mol. Recognit. Chem. 2001, 39, 229;
(c) Bartsch, R. A.; Kus, P.; Dalley, N. K.; Kou, X.
Tetrahedron Lett. 2002, 43, 5017; (d) Dalley, N. K.; Kou,
X.; Bartsch, R. A.; Czech, B. P.; Kus, P. J. Inclusion
Phenom. Mol. Recognit. Chem. 1997, 29, 323; (e) Ratila-
inen, J.; Airola, K.; Nieger, M.; Bohme, M.; Huuskonen,
J.; Rissanen, K. Chem. Eur. J. 1997, 3, 749; (f) Apel, S.;
Nitsche, S.; Beketov, K.; Seichter, W.; Seidel, J.;
Weber, E. J. Chem. Soc., Perkin Trans. 2 2001, 1212.
7. For the synthesis and binding properties of other types of
cyclophane, see: (a) Sarri, P.; Venturi, F.; Cuda, F.;
Roelens, S. J. Org. Chem. 2004, 69, 3654; (b) Lukyanenko,
N. G.; Kirichenko, T. I.; Lyapunov, A. Y.; Bogaschenko,
T. Y.; Pastushok, V. N.; Simonov, Y. A.; Fonari, M. S.;
Botoshansky, M. M. Tetrahedron Lett. 2003, 44, 7373; (c)
Kim, B. H.; Jeong, E. J.; Jung, W. H. J. Am. Chem. Soc.
1995, 117, 6390; (d) Bartoli, S.; Nicola, G. D.; Roelens, S.
J. Org. Chem. 2003, 68, 8149.
Acknowledgements
This work was supported by a Korea Research Founda-
tion Grant (KRF-2002-015-CP0215). We would like to
express our thanks to Dr. Sangku Lee (KRIBB, Taejon)
and Prof. CheHun Jung (Department of Chemistry,
CNU) for their helpful taking of MALDI-TOF mass
spectra.
8. Song, H. N.; Lee, H. J.; Kim, H. R.; Ryu, E. K.; Kim,
J. N. Synth. Commun. 1999, 29, 3303.
9. The synthesis of 4a and 4b follows the typical experimen-
tal procedures. The macrocyclization was conducted in
dilute condition (0.3mmol/100mL). After the reaction,
removal of CH3CN, usual aqueous workup with
CH2Cl2 followed by column chromatographic purification
process (CH2Cl2/hexanes, 1:17) we obtained the desired
products. Spectroscopic data of 4a and 4b are as
follows.
References and notes
1. Comprehensive Supramolecular Chemistry; Atwood, J. L.,
Davies, J. E. D., MacNicol, D. D., Vogtle, F., Eds.;
Pergamon: Oxford, 1996; Vol. 1.
2. Rudiger, V.; Schneider, H.-J.; SolovÕev, V. P.; Kaza-
chenko, V. P.; Raevsky, O. A. Eur. J. Org. Chem. 1999,
1847.
1
Compound 4a: 29%; H NMR (300MHz, CDCl3): d 5.11
3. For cation-p interactions, see: (a) Ma, J. C.; Dougherty,
D. A. Chem. Rev. 1997, 97, 1303; (b) Arnecke, R.;
Bohmer, V.; Cacciapaglia, R.; Cort, A. D.; Mandolini, L.
Tetrahedron 1997, 53, 4901; (c) Roelens, S.; Torriti, R. J.
Am. Chem. Soc. 1998, 120, 12443; (d) Dvornikovs, V.;
Smithrud, D. B. J. Org. Chem. 2002, 67, 2160.
(s, 8H), 6.80 (d, J = 9.0Hz, 8H), 7.11 (d, J = 9.0Hz, 8H),
7.38 (d, J = 8.1Hz, 8H), 7.52 (d, J = 8.1Hz, 8H), 7.87–7.90
(m, 4H), 8.06–8.08 (m, 4H); 13C NMR (75MHz, CDCl3):
d 65.83, 69.66, 109.73, 114.92, 115.32, 124.04, 127.30,
127.47, 127.96, 129.78, 129.96, 130.82, 136.11, 136.19,
140.27, 141.45, 157.84, 200.05; MALDI-TOF calcd for
C70H48O8+Na 1039.3247, found 1039.3324.
4. For the synthesis and binding properties of water-soluble
cyclophanes, see: (a) Inoue, M. B.; Velazquez, E. F.;
Inoue, M.; Fernando, Q. J. Chem. Soc., Perkin Trans. 2
1997, 2113; (b) Jorgensen, W. L.; Nguyen, T. B.; Sanford,
E. M.; Chao, I.; Houk, K. N.; Diederich, F. J. Am. Chem.
Soc. 1992, 114, 4003; (c) Garel, L.; Lozach, B.; Dutasta,
J.-P.; Collet, A. J. Am. Chem. Soc. 1993, 115, 11652; (d)
Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J.
E.; McCurdy, A.; Dougherty, D. A. J. Am. Chem. Soc.
1993, 115, 9907; (e) Cowart, M. D.; Sucholeiki, I.;
Bukownik, R. R.; Wilcox, C. S. J. Am. Chem. Soc. 1988,
110, 6204; (f) Mordasini Denti, T. Z.; van Gunsteren, W.
F.; Diederich, F. J. Am. Chem. Soc. 1996, 118, 6044; (g)
Miller, S. P.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1984,
106, 1492; (h) An, H.; Bradshaw, J. S.; Izatt, R. M. Chem.
Rev. 1992, 92, 543; (i) Izatt, R. M.; Pawlak, K.; Bradshaw,
J. S. Chem. Rev. 1995, 95, 2529; (j) Izatt, R. M.; Bradshaw,
1
Compound 4b: 43%; H NMR (300MHz, CDCl3): d 5.08
(s, 8H), 6.78 (d, J = 9.0Hz, 8H), 7.10 (d, J = 9.0Hz, 8H),
7.28 (s, 8H), 7.87–7.90 (m, 4H), 8.05–8.08 (m, 4H); 13C
NMR (75MHz, CDCl3): d 65.85, 69.56, 115.29, 124.03,
127.04, 129.79, 130.84, 136.08, 136.69, 141.47, 157.81,
200.03; MALDI-TOF calcd for C58H40O8+Na 887.2621,
found 887.2651.
10. Single crystals of 4b were obtained by crystallization of
pure 4b from the mixed solvent (ether and CH2Cl2)
according to the literature.6e Crystal data for 4b: empirical
formula C31H24Cl4O4, Fw = 602.30, crystal dimensions
0.30 · 0.20 · 0.20mm3, monoclinic, space group P 2(1)/n,
˚
˚
˚
a = 6.7567(4)(A), b = 11.0494(7)(A), c = 37.858(3)(A), a =
3
˚
90ꢁ, b = 90.660(2)ꢁ, c = 90ꢁ, V = 2826.2(3)(A) , Z = 4,
Dcalcd = 1.416mg/m3,
F000 = 1240,
MoKa
(k =
˚
0.71073(A)), R1 = 0.0899, wR2 = 0.2332 (I > 2r(I)).