Chemistry Letters Vol.33, No.9 (2004)
1175
R. I. Walter, J. Am. Chem. Soc., 99, 6910 (1977). c) R. P.
Scaringe and S. L. Reynolds, Acta Crystallogr., Sect. A,
A37, C202 (1981).
A
B
γ
a
A
γ
B
b
a
b
f
2
3
E. T. Seo, R. F. Nelsen, J. M. Fritsch, L. S. Marcoux, O. W.
Leedy, and R. N. Adams, J. Am. Chem. Soc., 89, 3498
(1966).
a) D. Hellwinkel and M. Melan, Chem. Ber., 104, 1001
(1971). b) D. Hellwinkel and M. Melan, Chem. Ber., 107,
616 (1974). c) F. A. Neugebauer, S. Bamberger, and W. R.
Groh, Chem. Ber., 108, 2406 (1975).
H. Takizawa, Jpn. Kokai Tokkyo Koho JP 11339868 (1999).
F. C. Krebs, P. S. Larsen, J. L. Larsen, C. S. Jacobsen, C.
Boutton, and N. Thorup, J. Am. Chem. Soc., 119, 1208
(1997).
a) S. Hiraoka, T Okamoto, M. Kozaki, D. Shiomi, K. Sato, T.
Takui, and K. Okada, J. Am. Chem. Soc., 126, 58 (2004).
b) T. Okamoto, E. Terada, M. Kozaki, M. Uchida, S.
Kikukawa, and K. Okada, Org. Lett., 5, 373 (2003). c) T.
Okamoto, M. Kozaki, Y. Yamashita, and K. Okada,
Tetrahedron Lett., 42, 7591 (2001).
α
d
β
β
α
δ
c
ε
d
δ
c
f
ε
g
e
e
g
C
C
4a
4b
Figure 1. Molecular structures of 4a and 4b drawn at 50% el-
lipsoid level; hydrogen atoms are eliminated for claritꢁy. Selected
4
5
ꢁ
ꢀ
bond lengths (A), angles ( ), and dihedral angles ( ) between
phenyl planes, A, B, and C. For 4a measured at 123 K: a:
1.333(6), b: 1.472(6), c: 1.406(4), d: 1.401(6), e: 1.373(6), f:
1.364(6), g: 1.420(6), ꢂ ¼ 114:6ð5Þ, ꢃ ¼ 118:1ð5Þ, ꢄ ¼
127:1ð2Þ, ꢀ ¼ 117:3ð4Þ, " ¼ 113:5ð4Þ, A/B ¼ 43:0, A/C ¼
25:5, B/C ¼ 24:7. For two independent molecules of 4b meas-
ured at 298 K: a: 1.459(10), 1.459(9), b: 1.363(10), 1.382(10), c:
1.452(8), 1.382(9), d: 1.793(8), 1.736(7), e: 1.737(8), 1.818(10),
f: 1.762(9), 1.774(9), g: 1.685(11), 1.796(10), ꢂ ¼ 120:3ð7Þ,
123.0(7), ꢃ ¼ 118:4ð7Þ, 116.8(6), ꢄ ¼ 121:3ð6Þ, 119.9(6), ꢀ ¼
99:1ð4Þ, 98.8(4), " ¼ 98:1ð4Þ, 101.6(4), A/B ¼ 62:3, 62.4,
A/C ¼ 32:4, 32.1, B/C ¼ 36:0, 36.9.
6
7
8
a) J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H.
Shaughnessy, and L. M. Alcazar-Roman, J. Org. Chem.,
64, 5575 (1999). b) T. Yamamoto, M. Nishiyama, and Y.
Koie, Tetrahedron Lett., 39, 2367 (1998). c) D. W. Old,
J. P. Wolfe, and S. L. Buchwald, J. Am. Chem. Soc., 120,
9722 (1998).
sulfur derivative 4b; A/B ¼ 43ꢁ for 4a, and 62ꢁ for 4b. As a re-
sult, the sulfur derivative 4b is more twisted than the oxygen de-
rivative 4a. This is also supported by the small C(sp2)–S–C(sp2)
bond angles (98–102ꢁ) for 4b compared to a general nonstrained
diphenylsulfide structure (ca. 105ꢁ).10
The electron-donating ability was estimated using cyclic
voltammetry.11 The oxygen derivative 4a showed a reversible
oxidation peak at E1=2 ¼ þ0:81 V vs SCE in DMF. On the other
hand, the sulfur derivative 4b showed an irreversible peak at
Ep ¼ þ1:14 V with a shoulder (þ1:04 V), indicating instability
of the radical cation. The oxidation potential of 4a was lower
than that of triphenylamine (Ep ¼ þ1:07 V under the identical
conditions) but higher than that of 10-phenylphenoxazine 8
(E1=2 ¼ þ0:75 V). The peak potential of 4b was higher than that
4a; colorless prisms, mp 165 ꢁC, MS (FAB) m=z 273 (Mþ),
1H NMR (400 MHz, in DMSO-d6): ꢀ 6.64 (d, 2H, J ¼
8:3 Hz), 6.88 (t, 1H, J ¼ 8:3 Hz), 6.96–7.08 (m, 6H), 7.37
(d, 2H, J ¼ 8:2 Hz); 13C NMR (100 MHz, in CDCl3): ꢀ
111.06, 114.60, 117.42, 120.92, 123.34, 123.54, 123.60,
129.09, 145.33, 146.98, Anal. Calcd. for C18H11NO2: C,
79.11; H, 4.06; N, 5.13; Found: C, 78.88, H, 3.98, N, 5.02.
4b; pale yellow prisms, mp 202 ꢁC, MS (FAB) m=z 305
(Mþ), 1H NMR (400 MHz, in CDCl3): ꢀ 6.93–6.98 (m,
1H), 6.98–7.02 (m, 2H), 7.04 (ddd, 2H, J ¼ 7:6, 7.2,
1.4 Hz), 7.13 (ddd, 2H, J ¼ 8:1, 7.2, 1.6 Hz), 7.18 (dd, 2H,
J ¼ 8:1, 1.4Hz), 7.21 (dd, 2H, J ¼ 7:6, 1.6 Hz); 13C NMR
(100 MHz, in CDCl3) ꢀ 120.64, 124.67, 124.83, 125.65,
125.87, 127.08, 127.45, 127.92, 139.55, 142.64, Anal. Calcd.
for C18H11NS2: C, 70.79; H, 3.63; N, 4.59; Found: C, 70.62;
H, 3.52; N, 4.51.
of triphenylamine and 10-phenylphenothiazine
9
(E1=2
¼
þ0:77 V). These results strongly suggest that the planarity in
radical cation states is very important for the oxidation of these
compounds. The radical cation species 4aꢂþ, 4bꢂþ should not be
planar and 4bꢂþ should be more twisted than 4aꢂþ. This factor
explains the higher oxidation potential of 4b. The lower oxida-
tion potential of 8, compared to that of 4a, can also be rational-
ized by the planar (twisted) phenoxazine radical cation frame-
work in 8ꢂþ (4aꢂþ).
9
Crystallographic data for 4a: a cololess prism, orthorhombic,
ꢀ
ꢀ
space group Pna21 (#33), a ¼ 7:0441ð9Þ A, b ¼ 9:738ð2Þ A,
ꢀ
ꢀ 3
c ¼ 17:841ð3Þ A, V ¼ 1223:8ð3Þ A , Z ¼ 4, T ¼ 123 K,
R1ðI > 2ꢁÞ ¼ 0:050, RwðI > 0ꢁÞ ¼ 0:067, Crystallographic
data for 4b, a pale yellow prism, orthorhombic, space group
The present study establishes a general synthetic route to
heteroatom-bridged triphenylamines. The sulfur derivative 4b
turned out to be in a largely twisted structure giving a higher
and irreversible oxidation peak. Preliminary calculations for
the targets 3a and 3b using the present bond lengths and angles
as initial parameters in the geometrical optimization suggests
that the sulfur derivative 3b is in a deep bowl-shape, whereas
the oxygen derivative 3a is in a shallow bowl-shape. Oxidation
of 3a would give rise to shrinkage (ꢄ2%) of the C–N bonds,6a
leading to a planar 3aꢂþ. It seems that 3aꢂþ is an ideal spin build-
ing block for our purpose. Synthesis of 3a and 3aꢂþ is under way.
ꢀ
ꢀ
P212121 (#19), a ¼ 8:231ð2Þ A, b ¼ 17:792ð4Þ A, c ¼
ꢀ
ꢀ 3
19:180ð3Þ A, V ¼ 2808:7ð1Þ A , Z ¼ 8, T ¼ 293 K, R1ðI >
2ꢁÞ ¼ 0:069, RwðI > 0ꢁÞ ¼ 0:073. CCDC 240403 and
240404, These data can be obtained free of charge via
Cambridge Crystallographic Data Center, 12 Union Road,
Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or
deposite@ccdc.cam.ac.uk).
10 G. D. Andreetti, J. Garbarczyk, and M. Krolikowska, Cryst.
Struct. Commun., 10, 789 (1981).
11 The cyclic voltammograms were measured in DMF in the
presence of tetrabutylammonium perchlorate (0.1 M) using
glassy carbon as a working electrode, Pt as a counter
electrode, and SCE as a reference electrode at sweep rate
of 50 mV/s.
References and Notes
a) F. A. Bell, A. Ledwith, and D. C. Sherington, J. Chem.
Soc. C, 1969, 2719. b) G. M. Brown, G. R. Freeman, and
1
Published on the web (Advance View) August 14, 2004; DOI 10.1246/cl.2004.1174