1628 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 6
Ka´lai et al.
cardiovascular disease and cancer: an update. Drug News Perspect.
2007, 20, 171–181.
1-(1-Oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-ylm-
ethyl)-1H-benzimidazole-4-carboxamide (15). To a solution of
compound 14 (805 mg, 5.0 mmol) and powdered K2CO3 (690 mg,
5.0 mmol) in acetonitrile (20 mL), compound 9 (1.16 g, 5.0 mmol)
was added, and the solution was refluxed for 3 h. After the mixture
was cooled, the inorganic salts were filtered off, the filtrate was
evaporated, and the residue was dissolved in CHCl3 (30 mL). The
organic phase was washed with water (10 mL), and the organic
phase was separated, dried (MgSO4), filtered, and evaporated. The
crude product was purified by flash column chromatography
(CHCl3/Et2O) to afford compound 15 as a yellow solid, 970 mg
(62%), mp 247-249 °C. Anal. (C16H20N3O) C, H, N. MS m/z (%):
313 (M+, 48), 299 (15), 283 (24), 41 (100).
(10) White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.;
Hostomsky, Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding,
B. T. Resistance-modifying agents. 9. Synthesis and biological
properties of benzimidazole inhibitors of the DNA repair enzyme
poly(ADR-ribose) polymerase. J. Med. Chem. 2000, 43, 4084–4097.
(11) Graziani, G.; Szabo´, C. Clinical perspectives of PARP inhibitors.
Pharmacol. Res. 2005, 52, 109–118.
(12) Li, H.; Xu, K. Y.; Zhou, L.; Ka´lai, T.; Zweier, J. L.; Hideg, K.;
Kuppusamy, P. A pyrroline derivative of mexiletine offers marked
protection against ischemia/reperfusion-induced myocardial contractile
dysfunction. J. Pharmacol. Exp. Ther. 2000, 295, 563–571.
(13) (a) Ka´lai, T.; Va´rb´ıro´, G.; Bogna´r, Z.; Pa´lfi, A.; Hanto´, K.; Bogna´r,
˝
B.; Osz, E.; Su¨megi, B.; Hideg, K. Synthesis and evaluation of the
permeability transition inhibitory characteristics of paramagnetic and
diamagnetic amiodarone derivatives. Bioorg. Med. Chem. 2005, 13,
2629–2636. (b) Bogna´r, Z.; Ka´lai, T.; Pa´lfi, A.; Hanto´, K.; Bogna´r,
B.; Ma´rk, L.; Szabo´, Z.; Tapodi, A.; Radnai, B.; Sa´rszegi, Zs.; Sza´nto´,
Acknowledgment. This work was supported by the Hungar-
ian National Research Fund, Grants OTKAT048334 and
OTKA-NKTH K67597. We thank to Prof. W. L. Hubbell for
help in PARP inhibitor docking into PARP1 enzyme. We thank
Noemi Lazsanyi for technical assistance, Krisztina Kis for
elemental analysis, and I. Pa´sztor for biological measurements.
´
A., Jr.; Gallyas, F.; Hideg, K.; Su¨megi, B.; Va´rb´ıro´, G. A novel SOD-
mimetic permeability transition inhibitor agent protects ischemic heart
by inhibiting both apoptotic and nectrotic cell death. Free Radical
Biol. Med. 2006, 41, 835–848.
(14) (a) Ka´lai, T.; Khan, M.; Balog, M.; Kutala, K. V.; Kuppusamy, P.;
Hideg, K. Structure-activity studies on the protection of trimetazidine
derivatives modified with nitroxides and their precursor from myo-
cardial ischemia-reperfusion injury. Bioorg. Med. Chem. 2006, 14,
5510–5516. (b) Kutala, V. K.; Khan, M.; Mandal, R.; Ganesan, L. P.;
Tridandapani, S.; Ka´lai, T.; Hideg, K.; Kuppusamy, P. Attenuation
of myocardial ischemia-reperfusion injury by trimetazidine derivatives
functionalized with antioxidant properties. J. Pharmacol. Exp. Ther.
2006, 317, 921–928.
Supporting Information Available: Table of micronalytical data
of compounds 2-25; physicochemical and spectral data of com-
pounds 2e,f,j,n,m,p, 3b-n, 4b-k,o,p, 13a,b, 17, 19, 20, 21, 22,
24, 25; blank fluorescence measurement under Fenton conditions.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(15) Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed
multiple ligands. Drug DiscoVery Today 2004, 9, 641–651.
(16) Lam, A. M.; Pattison, D. I.; Bottle, S. E.; Keddie, J. D.; Davies, J. M.
Nitric oxide and nitroxides can act as efficient scavengers of protein-
derived free radicals. Chem. Res. Toxicol. 2008, 21, 2111–2119.
(17) Krishna, M. C.; Russo, A.; Mitchell, J. B.; Goldstein, S.; Hafni, H.;
Samuni, A. Do nitroxide antioxidants act as scavengers of O2•- or as
SOD mimics? J. Biol. Chem. 1996, 271, 26026–26031.
References
(1) Szabo, C. Cell Death: The Role of PARP; CRC Press: Boca Raton,
FL, 2000.
(2) Tentori, C.; Portarena, I.; Graziani, G. Potential Clinical Applications
of Poly(ADP-ribose) Polymerase PARP Inhibitors. Pharamcol. Res.
2002, 45, 73–85.
(3) de Murcia, C., Shall, S., Eds. From DNA Damage and Stress Signalling
to Cell Death. Poly ADP-Ribolysation Reactions; Oxford University
Press: Oxford, U.K., 2000.
(18) Glebska, J.; Pulaski, L.; Gwozdzinski, K.; Kolimowski, J. Structure-
activity relationship studies of protective function of nitroxides in
Fenton system. BioMetals 2001, 14, 159–170.
(19) Twomey, P.; Taira, J.; DeGraff, W.; Mitchell, J. B.; Russo, A.; Krishna,
M. C.; Hankovszky, H. O.; Frank, L.; Hideg, K. Direct evidence for
in vivo nitroxide free radical production from a new antiarrhythmic
drug by EPR spectroscopy. Free Radical Biol. Med. 1997, 22, 909–
916.
(4) Eliasson, M. J.; Sampei, K.; Mandir, A. S.; Hurn, P. D.; Traystman,
R. J.; Bao, J.; Piper, A.; Wang, Z. Q.; Dawson, T. M.; Snyder, S. H.;
Davson, V. L. Poly(ADP-ribose) polymerase gene disruption renders
mice resistant to cerebral ischemia. Nat. Med. 1997, 3, 1089–1095.
(5) (a) Plascke, K.; Kopitz, J.; Weigand, M. A.; Martin, E.; Bardenheuer,
H. J. The neuroprotective effect of cerebral poly(ADP-ribose) poly-
merase inhibition in a rat model of global ischemia. Neurosci. Lett.
2000, 248, 109–112. (b) To´th, O.; Szabo´, C.; Kecske´s, M.; Po´to´, L.;
Nagy, A.; Losonczy, H. In vitro effect of the potent poly(ADP-ribose)
polymerase (PARP) inhibitor INO-1001 alone and in combination with
aspirin, eptifibatide, tirofiban, enoxaparin or alteplase on haemostatic
parameters. Life Sci. 2006, 79, 317–323.
(20) Bobko, A.; Kirilyuk, I. A.; Grigor’ev, I. A.; Zweier, J. L.; Khramtsov,
V. V. Reversible reduction of nitroxides to hydroxilamines: roles of
ascorbate and glutathione. Free Radical Biol. Med. 2007, 42, 404–
412.
˝
(21) Kulcsa´r, Gy.; Ka´lai, T.; Osz, E.; Sa´r, C. P.; Jeko˝, J.; Su¨megi, B.; Hideg,
K. Synthesis and study of new 4-quinazolinone inhibitors of the DNA
repair enzyme poly(ADP-ribose) polymerase (PARP). ARKIVOC 2003,
(Part iv), 121–131.
(6) Szabados, E.; Literati-Nagy, P.; Farkas, B.; Su¨megi, B. BGP-15, a
nicotinic amidoxime derivate protecting heart from ischemia reper-
fusion injury through modulation of poly(ADP-ribose) polymerase.
Biochem. Pharmacol. 2000, 59, 937–945.
(22) Alexy, T.; To´th, A.; Marton, Z.; Horva´th, B.; Koltai, K.; Fehe´r, G.;
Kesmarky, G.; Ka´lai, T.; Hideg, K.; Su¨megi, B.; To´th, K. Inhibition
of ADP-evoked platelet aggregation by selected poly(ADP-ribose)
polymerase Inhibitors. J. CardioVasc. Pharmacol. 2004, 43, 423–431.
(23) Barkalow, J. H.; Breting, J.; Gaede, J. B.; Haight, R. A.; Henry, R.;
Kotecki, B.; Mei, J.; Pearl, K. B.; Tedrow, J. S.; Viswanath, S. K.
Process development for ABT-472, a benzimidazole PARP inhibitor.
Org. Process Res. DeV. 2007, 11, 693–698.
(24) Bogna´r, B.; Ka´lai, T.; Hideg, K. Synthesis of benzimidazoles
condensed with, or linked to, nitroxides or heterocyclic N-oxides.
Synthesis 2008, 2439–2445.
(25) Sa´r, P. C.; Ka´lai, T.; Ba´ra´cz, M. N.; Jerkovich, Gy.; Hideg, K. Selective
reduction of nitrones and nitroxides to functionalized secondary
amines. Synth. Commun. 1995, 25, 2929–2940.
(26) Austen, S. C.; Kane, J. M. A. Short synthesis of the PARP inhibitor
2-(4-trifluoromethylphenyl)benzimidizal-4-carboxamide (NU1077). J.
Heterocycl. Chem. 2001, 38, 979–980.
(27) Hideg, K.; Hankovszky, H. O.; Lex, L.; Kulcsa´r, Gy. Nitroxyls. VI.
Synthesis and reactions of 3-hydroxymethyl-2,2,5,5-tetramethyl-2,5-
dihydropyrrole-1-oxyl and 3-formyl derivatives. Synthesis 1980, 91,
1914.
(28) Ka´lai, T.; Balog, M.; Jeko˝, J.; Hideg, K. Synthesis and reactions of
symmetric paramagnetic pyrrolidine diene. Synthesis 1999, 973–980.
(29) Ka´lai, T.; Balog, M.; Jeko˝, J.; Hideg, K. 3-Substituted-2,2,5,5-
tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals as versatile syn-
thones for synthesis of new paramagnetic heterocycles. Synthesis 1998,
1476–1482.
(7) (a) Ruf, A.; DeMurcia, G.; Schulz, G. E. Inhibitor and NAD+ binding
to poly(ADP-ribose) polymerase as derived from crystal structures
and homology modeling. Biochemistry 1998, 37, 3893–3900. (b)
Costantino, G.; Macchiarulo, A.; Camaioni, E.; Pellicciari, R. Mod-
elling of poly(ADP-ribose)polymerase (PARP) inhibitors. Docking of
ligands and quantitative structure-activity relationship analysis.
J. Med. Chem. 2001, 44, 3786–3794.
(8) Banasik, M.; Komura, H.; Shimoyama, M.; Ueda, K. Specific inhibitors
of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase.
J. Biol. Chem. 1992, 267, 1569–1575.
(9) (a) Virag, L.; Szabo, C. The therapeutic potential of poly(ADP-ribose)
polymerase inhibitors. Pharmacol. ReV. 2002, 54, 375–429. (b)
Pellicciari, R.; Camaioni, E.; Costantino, G. Life or death decisions:
the case of poly(ADP-ribose) polymerase (PARP) as a therapeutic
target for brain ischaemia. Prog. Med. Chem. 2004, 42, 125–169. (c)
Peukert, S.; Schwahn, U.; Gu¨ssregen, S.; Schreuder, H. E.; Hofmeister,
A. Poly(ADP-ribose) polymerase (PARP-1) inhibitors based on
tetrahydro-1(2H)-isoquinoline scaffold: synthesis, biological evaluation
and X-ray crystal structure. Synthesis 2005, 1550–1554. (d) Woon,
E. C.; Threadqill, M. D. Poly(ADP-ribose)polymerase inhibitionswhere
now? Curr. Med. Chem. 2005, 12, 2373–2392. (e) Jagtap, P.; Szabo´,
C. Poly(ADP-ribose) polymerase and the therapeutic effects of its
inhibitors. Nat. ReV. Drug DiscoVery 2005, 4, 421–440. (f) Horvath,
E. M.; Szabo, C. Poly(ADP-ribose) polymerase as a drug target for