Scheme 1
The common intermediate, the aza-tricycle 5, that would
link together pathways toward (+)-cylindricines [ent-1c-e]
and (-)-lepadiformine [4], is shown in Scheme 1. A C4-
deoxygenation of 5 would lead to (-)-lepadiformine [4],
whereas an appropriate epimerization at C5 would lead to
the ent-cylindricines.
The aza-tricycle 5 was envisioned originally from a
tandem Mannich strategy17-19 starting from amino ketone 8
[8f7f6f5] as outlined in Scheme 2. Although this strategy
Figure 1.
that one issue involving these alkaloids has remained
unexplored. The aza-tricyclic motif in 1, 3, and 4 can be
accessed through a tandem Mannich strategy that has not
been employed in the synthesis of the cylindricines, although
Kibayashi11 and Weinreb12 constructed the C5-10 bond in
the aza-spirocyclic AC-ring of (-)-lepadiformine 4 via a
Mannich-type addition.
Scheme 2
These strategies11,12 appear to selectively provide a relative
C5-10 stereochemistry suitable only for the synthesis of the
trans-fused AB-ring in lepadiformine 4, whereas cylindri-
cines possess the cis-fused 1-aza-decalinic AB-ring. How-
ever, this implies that the cylindricine family, specifically
(+)-cylindricines [ent-1c-e], and (-)-lepadiformine [4] can
be related structurally through an epimerization at C5 of a
suitable common intermediate. We report here total syntheses
of (+)-cylindricines C-E and (-)-lepadiformine via a
common intermediate derived from an aza-Prins cyclization
and Wharton’s rearrangement.
is attractive in alkaloid synthesis18,19 and can allow formation
of two bonds [C5-10 and then C2-3] in a stereoselective
manner, in this specific application, we experienced many
difficulties.
To demonstrate the concept of using 5 as a common
intermediate to access both (+)-cylindricines and (-)-
lepadiformine, we ultimately prepared 5 from 8 through an
aza-Prins cyclization20 followed by Wharton’s rearrange-
ment.21,22
Our synthesis commenced with butyrolactam 1123 as
shown in Scheme 3. Addition of the alkyllithium gen-
(11) (a) Abe, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 2000, 41,
1205. (b) Abe, H.; Aoyagi, S.; Kibayashi, C. J. Am. Chem. Soc. 2000, 122,
4583. For (-)-lepadiformine, see: (c) Abe, H.; Aoyagi, S.; Kibayashi, C.
Angew. Chem., Int. Ed. 2002, 41, 3017.
(12) For a recent total synthesis of (-)-lepadiformine, see: (a) Sun, P.;
Sun, C.; Weinreb, S. M. J. Org. Chem. 2002, 67, 4337. (b) Sun, P.; Sun,
C.; Weinreb, S. M. Org. Lett. 2001, 3, 3507.
(13) For a recent total synthesis of (()-lepadiformine, see: (c) Greshock,
T. J.; Funk, R. L. Org. Lett. 2001, 3, 3511.
(14) For intermolecular formal aza-[3 + 3] cycloadditions, see: (a)
Sydorenko, N.; Hsung R. P.; Darwish, O. S.; Hahn, J. M.; Liu, J. J. Org.
Chem. 2004, 69, ASAP (DOI: 10.1021/jo001219z). (b) Sklenicka, H. M.;
Hsung, R. P.; McLaughlin, M. J.; Wei, L.-L.; Gerasyuto, A. I.; Brennessel,
W. W. J. Am. Chem. Soc. 2002, 124, 10435. (c) Sklenicka, H. M.; Hsung,
R. P.; Wei, L.-L.; McLaughlin, M. J.; Gerasyuto, A. I.; Degen, S. J.; Mulder,
J. A. Org. Lett. 2000, 2, 1161. (d) Hsung, R. P.; Wei, L.-L.; Sklenicka, H.
M.; Douglas, C. J.; McLaughlin, M. J.; Mulder, J. A.; Yao, L. J. Org. Lett.
1999, 1, 509.
(15) For intramolecular formal aza-[3 + 3] cycloaddition, see: Wei, L.-
L.; Sklenicka, H. M.; Gerasyuto, A. I.; Hsung, R. P. Angew. Chem., Int.
Ed. 2001, 40, 1516.
(16) For applications in natural product syntheses, see: (a) Luo, S.;
Zificsak, C. Z.; Hsung, R. P. Org. Lett. 2003, 5, 4709. (b) McLaughlin, M.
J.; Hsung, R. P.; Cole, K. C.; Hahn, J. M.; Wang, J. Org. Lett. 2002, 4,
2017.
(17) Robinson, R. J. Chem. Soc. 1917, 762.
(18) For recent reviews, see: (a) Bur, S. K.; Martin, S. F. Tetrahedron
2001, 57, 3221. (b) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000,
56, 3817. (c) Scholz, U.; Winterfeldt, E. Nat. Prod. Rep. 2000, 17, 349. (d)
Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37,
1044. (e) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.
(19) For some examples of natural product synthesis that employ a
tandem Mannich strategy, see: (a) Corey, E. J.; Balanson, R. D. J. Am.
Chem. Soc. 1974, 96, 6516. (b) Rykman, D. M.; Stevens, R. V. J. Am.
Chem. Soc. 1987, 109, 4940. (c) Ihara, M.; Suzuki, M.; Fukumoto, K.;
Kabuto, C. J. Am. Chem. Soc. 1990, 112, 1164. (d) Takahashi, I.; Tsuzuki,
M.; Yokota, H.; Kitajima, H. Heterocycles 1994, 37, 933. (e) Takahashi,
I.; Tsuzuki, M.; Yokota, H.; Morita, T.; Kitajima, H. Heterocycles 1996,
43, 71. (f) Scott, R. W.; Epperson, J.; Heathcock, C. H. J. Org. Chem.
1998, 63, 5001.
3990
Org. Lett., Vol. 6, No. 22, 2004