Journal of the American Chemical Society
Page 4 of 5
1
2
3
† These authors contributed equally. The authors declare no
competing financial interests.
(7) (a) Perret-Aebi, L.-E.; von Zelewsky, A.; Dietrich-Buchecker, C.;
Sauvage, J.-P. Angew. Chem., Int. Ed. 2004, 43, 4482–4485. (b) Feigel,
M.; Ladberg, R.; Engels, S.; Herbst-Irmer, R.; Fröhlich, R. Angew.
Chem., Int. Ed. 2006, 45, 5698–5702. (c) Ponnuswamy, N.; Cougnon,
F. B. L.; Clough, J. M.; Pantoş, G. D.; Sanders, J. K. M. Science 2012,
338, 783–785. (d) Zhang, G.; Gil-Ramírez, G.; Markevicius, A.;
Browne, C.; Vitorica-Yrezabal, I. J.; Leigh, D. A. J. Am. Chem. Soc.
2015, 137, 10437–10442.
(8) For lanthanide template synthesis of other interlocked molecular
architectures, see: (a) Lincheneau, C.; Jean-Denis, B.; Gunnlaugsson,
T. Chem. Commun. 2014, 50, 2857–2860. (b) Zapata, F.; Blackburn, O.
A.; Langton, M. J.; Faulkner, S.; Beer, P. D. Chem. Commun. 2013, 49,
8157–8159. (c) Langton, M. J.; Blackburn, O. A.; Lang, T.; Faulkner, S.;
Beer, P. D. Angew. Chem., Int. Ed. 2014, 53, 11463–11466.
4
5
6
7
8
9
ACKNOWLEDGMENTS
We thank the European Research Council (ERC) and Engi-
neering and Physical Sciences Research Council (EPSRC) for
funding (EP/H021620/2), the EPSRC National Mass Spec-
trometry Service Centre (Swansea, U.K.) for high-resolution
mass spectrometry, and Dr Louise Natrajan and Dr Jennifer
E. Jones for their assistance with lifetime measurements.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(9) Niemeyer, J. Nachr. Chem. 2016, 64, 741–746.
(1) Lim, N. C. H.; Jackson, S. E. J. Phys.: Condens. Matter 2015, 27,
354101.
(2) Virnau P.; Mirny L. A.; Kardar, M. PLoS Comput. Biol. 2006, 2,
1074–1079.
(3) (a) Fenlon, E. E. Eur. J. Org. Chem. 2008, 5023−5035. (b) Forgan,
R. S.; Sauvage, J.-P.; Stoddart, J. F. Chem. Rev. 2011, 111, 5434−5464. (c)
Ayme, J.-F.; Beves, J. E.; Campbell, C. J.; Leigh, D. A. Chem. Soc. Rev.
2013, 42, 1700−1712.
(4) Adams, C. C. The knot book: an elementary introduction to the
mathematical theory of knots; American Mathematical Society: Prov-
idence, RI, 2004.
(10) For recent studies on diastereometric and asymmetric catalysis
with rotaxanes, see (a) Galli, M.; Lewis, J. E. M.; Goldup, S. M.; An-
gew. Chem., Int. Ed. 2015, 54, 13545–13549. (b) Cakmak, Y., Erbas-
Cakmak, S.; Leigh, D. A. J. Am. Chem. Soc. 2016, 138, 1749–1751. (c)
Goldup, S. Nat. Chem. 2016, 8, 404–406.
(11) Kotova, O.; Kitchen, J. A.; Lincheneau, C.; Peacock, R. D.;
Gunnlaugsson, T. Chem. Eur. J. 2013, 19, 16181–16186.
(12) (a) Guo, J.; Mayers, P. C.; Breault, G. A.; Hunter, C. A. Nat. Chem.
2010, 2, 218−222. (b) Fenlon, E. E. Nat. Chem. 2010, 2, 156–157.
(13) Sauvage and co-workers found that the length of linkers between
chelating units significantly affected knot yield in their seminal tre-
foil knot synthesis program, see: (a) Dietrich-Buchecker, C. O.;
Nierengarten, J.-F.; Sauvage, J.-P. Tetrahedron Lett. 1992, 33, 3625–
3628. (b) Dietrich-Buchecker, C. O.; Nierengarten, J.-F.; Sauvage, J.-
P.; Armaroli, N.; Balzani, V.; De Cola, L. J. Am. Chem. Soc. 1993, 115,
11237–11244. (c) Albrecht-Gary, A. M.; Dietrich-Buchecker, C. O.;
Guilhem, J.; Meyer, M.; Pascard, C.; Sauvage, J.-P. Recl. Trav. Chim.
Pays-Bas, 1993, 112, 427–428. (d) Dietrich-Buchecker, C. O.; Sauvage,
J.-P.; De Cian, A.; Fischer, J. J. Chem. Soc., Chem. Commun. 1994,
2231–2232.
(14) (a) Leonard, J. P.; Jensen, P.; McCabe, T.; O'Brien, J. E.; Peacock,
R. D.; Kruger, P. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2007, 129,
10986–10987. (b) El Aroussi, B.; Zebret, S.; Besnard, C.; Perrottet, P.;
Hamacek, J. J. Am. Chem. Soc. 2011, 133, 10764–10767. (c) Hamacek, J.;
Bernardinelli, G.; Filinchuk, Y. Eur. J. Inorg. Chem. 2008, 3419–3422.
(d) Lincheneau, C.; Destribats, C.; Barry, D. E.; Kitchen, J. A.; Pea-
cock, R. D.; Gunnlaugsson, T. Dalton Trans. 2011, 40, 12056–12059.
(15) Bünzli, J.-C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048–1077.
(16) Marcos, V.; Stephens, A. J.; Jaramillo-Garcia, J.; Nussbaumer, A.
L.; Woltering, S. L.; Valero, A.; Lemonnier, J.-F.; Vitorica-Yrezabal, I.
J.; Leigh, D. A. Science 2016, 352, 1555−1559.
(5) (a) Dietrich-Buchecker, C. O.; Sauvage, J.-P. Angew. Chem., Int.
Ed. Engl. 1989, 28, 189−192. (b) Dietrich-Buchecker, C. O.; Guilhem,
J.; Pascard, C.; Sauvage, J.-P. Angew. Chem., Int. Ed. Engl. 1990, 29,
1154−1156. (c) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kintzinger, J.-
P.; Maltèse, P.; Pascard, C.; Guilhem, J. New J. Chem. 1992, 16,
931−942. (d) Ashton, P. R.; Matthews, O. A.; Menzer, S.; Raymo, F.
M.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Liebigs Ann./Recl.
1997, 2485−2494. (e) Rapenne, G.; Dietrich-Buchecker, C.; Sauvage,
J.-P. J. Am. Chem. Soc. 1999, 121, 994−1001. (f) Safarowsky, O.; Nieger,
M.; Fröhlich, R.; Vögtle, F. Angew. Chem., Int. Ed. 2000, 39,
1616−1618. (g) Adams, H.; Ashworth, E.; Breault, G. A.; Guo, J.;
Hunter, C. A.; Mayers, P. C. Nature 2001, 411, 763. (h) Brüggemann, J.;
Bitter, S.; Müller, S.; Müller, W. M.; Müller, U.; Maier, N. M.; Lind-
ner, W.; Vögtle, F. Angew. Chem., Int. Ed. 2007, 46, 254−259. (i) Bar-
ran, P. E.; Cole, H. L.; Goldup, S. M.; Leigh, D. A.; McGonigal, P. R.;
Symes, M. D.; Wu, J.; Zengerle, M. Angew. Chem., Int. Ed. 2011, 50,
12280−12284. (j) Prakasam, T.; Lusi, M.; Elhabiri, M.; Platas-Iglesias,
C.; Olsen, J.-C.; Asfari, Z.; Cianférani-Sanglier, S.; Debaene, F.; Char-
bonnière, L. J.; Trabolsi, A. Angew. Chem., Int. Ed. 2013, 52,
9956−9960. (k) Ponnuswamy, N.; Cougnon, F. B. L.; Pantoş, G. D.;
Sanders, J. K. M. J. Am. Chem. Soc. 2014, 136, 8243−8251. (l) Bil-
beisi, R. A.; Prakasam, T.; Lusi, M.; El Khoury, R.; Platas-Iglesias, C.;
Charbonnière, L. J.; Olsen, J.-C.; Elhabiri, M.; Trabolsi, A. Chem. Sci.
2016, 7, 2524–2531. For other small-molecule knots, see: (m) Ayme, J.-
F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz,
D. Nat. Chem. 2012, 4, 15−20. (n) Ayme, J.-F.; Beves, J. E.; Leigh, D. A.;
McBurney, R. T.; Rissanen, K.; Schultz, D. J. Am. Chem. Soc. 2012, 134,
9488−9497. (o) Engelhard, D. M.; Freye, S.; Grohe, K.; John, M.;
Clever, G. H. Angew. Chem., Int. Ed. 2012, 51, 4747−4750. (p) Ayme,
J.-F.; Beves, J. E.; Campbell, C. J.; Leigh, D. A. Angew. Chem., Int. Ed.
2014, 53, 7823−7827. (q) Ayme, J.-F.; Gil-Ramírez, G.; Leigh, D. A.;
Lemonnier, J.-F.; Markevicius, A.; Muryn, C. A.; Zhang, G. J. Am.
Chem. Soc. 2014, 136, 13142–13145. (r) Ayme, J.-F.; Beves, J. E.; Camp-
bell, C. J.; Gil-Ramírez, G.; Leigh, D. A.; Stephens, A. J. J. Am. Chem.
Soc. 2015, 137, 9812–9815.
(17) (a) Giuseppone, N.; Van de Weghe, P.; Mellah, M.; Collin, J.
Tetrahedron 1998, 54, 13129–13148. (b) Hatanaka, M.; Morokuma, K. J.
Am. Chem. Soc. 2013, 135, 13972–13979.
(18) In the catalysis studies Λ-Lu(R6)-2(CF3SO3)3 gave similar results
to Λ-Eu(R6)-2(CF3SO3)3.
(19) (a) Kobayashi, S. Pure Appl. Chem. 2007, 79, 235–245. (b) Mei, Y.;
Averill, D. J.; Allen, M. J. J. Org. Chem. 2012, 77, 5624–5632.
(20) The relative stereochemistry of the products was assigned
through comparison of 5 and 11 to literature values see; (a) Shibata,
I.; Suwa, T.; Sakakibara, H.; Baba, A. Org. Lett. 2002, 4, 301–303. (b)
Ohtsuka, Y.; Koyasu, K.; Ikeno, T.; Yamada, T. Org. Lett. 2001, 3,
2543–2546.
(21) For general principles in assigning syn vs anti diastereomers see:
Hen, K. K.; Simpson, J.; Smith, R. A. J.; Robinson, W. T. J. Org. Chem.
1981, 46, 2932–2934.
(6) For the separation of molecular knot enantiomers, see: (a)
Rapenne, G.; Dietrich-Buchecker, C.; Sauvage, J.-P. J. Am. Chem. Soc.
1996, 118, 10932–10933. (b) Dietrich-Buchecker, C.; Rapenne, G.;
Sauvage, J.-P.; De Cian, A.; Fischer, J. Chem. Eur. J. 1999, 5, 1432–1439.
(c) Vögtle, F.; Hünten, A.; Vogel, E.; Buschbeck, S.; Safarowsky, O.;
Recker, J.; Parham, A.-H.; Knott, M.; Müller, W. M.; Müller, U.;
Okamoto, Y.; Kubota, T.; Lindner, W.; Francotte, E.; Grimme, S.
Angew. Chem., Int. Ed. 2001, 40, 2468–2471.
(22) Supkowski, R. M.; Horrocks Jr, W. D. Inorg. Chim. Acta. 2002,
340, 44−48.
(23) We cannot rule out hydrogen bonding activation of the alde-
hyde from the amide group on the knot exterior as the mode of ca-
talysis, but this mode of activation seems unlikely as enantioselectiv-
ities are improved using methanol as a co-solvent as opposed to
solely non-hydrogen bonding solvents.
ACS Paragon Plus Environment