´
31
A. Huczynski et al. / Journal of Molecular Structure 930 (2009) 26–31
Table 4
1H and 13C NMR chemical shifts (ppm) of proton and carbon atom signals of CPhDA and its (1:1) complex with LiClO4 in CD3CN.
1H NMR
CPhDA
13C NMR
CPhDA
CPhDA:LiClO4 (1:1)
D
CPhDA:LiClO4 (1:1)
D
C(1,6)H
C(2,5)H
C(3,4)
C(7,14)
C(8,13)H2
C(9,12)H2
C(10,11)H2
N(1,2)H
–
–
–
136.11
129.14
130.78
169.31
40.07
69.77
69.58
–
135.72
128.74
131.17
170.86
40.27
69.53
69.22
–
–0.39
–0.40
0.39
1.55
0.20
–0.24
–0.36
–
7.57
7.42
–
3.50
3.60
3.57
7.09
7.53
7.53
–
3.50
3.62
3.59
7.25
–0.04
0.11
–
0.00
0.02
0.02
0.16
D
= dCPhDA:LiClO4 (1:1) ꢁ dCPhDA.
4. Conclusions
Cyclic diamide of o-phthalic acid (CPhDA) was synthesised and
it is demonstrated by ESI mass spectrometry that this compound
forms 1:1 and 2:1 complexes with Li+ cations. The 1:1 complex
was obtained in the solid state and its structure is determined by
X-ray diffraction method. The structure in the solid is compared
with that in the solution using FT-IR, NMR and PM5 semiempirical
methods. It is found that the structures of 1:1 complex in both
states are different.
References
[1] (a) K. Gloe, in: Macrocyclic Chemistry: Current Trends and Future Perspectives,
Springer, Dordrecht, 2005;
(b) B. Dietrich, P. Viout, J.-M. Lehn, in: Macrocyclic Chemistry: Aspects of
Organic and Inorganic Supramolecular Chemistry, VCH, Weinheim, 1993.
[2] (a) J.S. Bradshaw, K.E. Krakowiak, R.M. Izatt, Tetrahedron 48 (1992) 4475;
(b) K.J. Jankowski, D. Parker, in: Advances in Metals in Medicines, B.A. Murer
(Ed.), Tai Press, 1992.;
(c) D. Parker, Chem. Soc. Rev. 19 (1990) 271;
(d) L.F. Lindoy, in: Chemistry of Macrocyclic Ligand Complexes, Cambridge
University, Cambridge, 1989;
(e) P. Tongraung, N. Chantarasiri, T. Tuntulani, Tetrahedron Lett. 44 (2003) 29;
(f) A.A. Mohamed, G.S. Masaret, A.H.M. Elwahy, Tetrahedron 63 (2007) 4000.
[3] (a) R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, D. Sen,
Chem. Rev. 85 (1985) 271;
(b) A. Szumna, J. Jurczak, Eur. J. Org. Chem. (2001) 4031;
(c) J.A. Wisner, P.D. Beer, N.G. Berry, B. Tomapatanaget, PNAS 99 (2002) 4983;
(d) S. Kumar, R. Singh, H. Singh, Bioorg. Med. Chem. Lett. 3 (1993) 363;
(e) S. Kumar, N. Kaur, H. Singh, Tetrahedron 52 (1996) 13483;
(f) S. Kumar, N. Kaur, H. Singh, Tetrahedron Lett. 37 (1996) 2071;
(g) M.J. Chmielewski, A. Szumna, J. Jurczak, Tetrahedron Lett. 45 (2004) 8699.
[4] (a) K.E. Krakowiak, J.S. Bradshaw, D.J. Zamecka-Krakowiak, Chem. Rev. 89
(1989) 929;
(b) A.H.M. Elwahy, J. Heterocycl. Chem. 40 (2003) 1;
(c) B.P. Czech, U.S. Patent 4,900,818, 1990.
[5] H. Sharghi, A.R. Massah, H. Eshgi, K. Niknam, J. Org. Chem. 63 (1998) 1455.
[6] (a) B.S. Jhaumeer-Laulloo, M. Witvrouw, Indian J. Chem. B 39 (2000) 842;
(b) B.S. Jhaumeer-Laulloo, Asian J. Chem. 12 (2000) 775.
[7] U. Olsher, R.M. Izatt, J.S. Bradshaw, N.K. Dalley, Chem. Rev. 91 (1991) 137.
[8] G. Sheldrick, in: SHELXS-97, Program for Crystal Structure Solution, University
of Göttingen, 1997.
[9] G. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Göttingen, 1997.
[10] J.J.P. Stewart, Methods J. Comp. Chem. 12 (1991) 320.
[11] P. Przybylski, A. Huczyn´ ski, B. Brzezinski, J. Mol. Struct. 826 (2007) 156.
[12] (a) J. Jurczak, R.J. Ostaszewski, Coord. Chem. 27 (1992) 201;
(b) B. Dietrich, in: J.L. Atwood, J.W. Steed (Eds.), Encyclopaedia of
Supramolecular Chemistry, Taylor & Francis Group, 2004, pp. 830–844;
(c) P. Knops, N. Sendhoff, H.B. Mekelburger, F. Vogtle, Top. Curr. Chem. 161
(1992) 1;
Fig. 6. The structure of: (a) CPhDA–Li+ and (b) 2CPhDA–Li+ complexes calculated by
PM5 semiempirical method.
(d) A. Shockravi, S. Bavilit, J. Incl. Phenom. Macrocyclic Chem. 52 (2005) 223.
[13] N.V. Gerbeleu, V.B. Arion, J. Burgess, in: Template Synthesis of Macrocyclic
Compounds, Springer, NY, 1999.
[14] J. Jurczak, M. Pietraszkiewicz, Top. Curr. Chem. 130 (1985) 183.
[15] P. Przybylski, A. Huczyn´ ski, M. Wichłacz, M. Ratajczak-Sitarz, A. Katrusiak, B.
Brzezinski, J. Mol. Struct. 840 (2007) 22.
tion of the Li+ cation. In contrast to the structure of the 2:1 com-
plex, only the oxygen atoms of the carbonyl groups are engaged
in this process.