ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Access to Indenones by Rhodium(III)-
Catalyzed CÀH Annulation of Arylnitrones
with Internal Alkynes
Zisong Qi,†,‡ Mei Wang,‡ and Xingwei Li*,†
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
China, and State Key Laboratory of Fine Chemicals, Dalian University of Technology,
Dalian 116024, China
Received September 3, 2013
ABSTRACT
Under redox-neutral conditions, rhodium(III)-catalyzed CÀH annulation of N-tert-butyl-R-arylnitrones with internal alkynes has been realized for
the synthesis of indenones under mild conditions. This reaction proceeded in moderate to high yields and with good functional group tolerance.
Indenones are important carbocycles that are useful
skeletons in synthetic chemistry, biology, and material
science.1 Consequently, different metal-catalyzed routes
for efficient preparation of indenones have been developed
in the past decades.2 A well-studied strategy of catalytic
synthesis of indenones utilized ortho-functionalized
esters,3 amides,3 aldehydes,4 nitriles,5 or halides6 as the
starting material. Wender and co-workers took advantage
of the strained cyclopropenones and achieved a coupling
with in situ generated benzyne to give this type of product.7
On the other hand, metal-catalyzed CÀH bond activation
has proven to be a powerful strategyfor the construction of
CÀC bonds and has received increasing attention in the
past decade.8 Thus under rhodium(I) catalysis, the cou-
pling of aroyl chlorides with internal alkynes gave
(8) (a) Yan, G.; Wu, X.; Yang, M. Org. Biomol. Chem. 2013, 11, 5558.
(b) Ackermann, L. Acc. Chem. Res. 201310.1021/ar3002798. (c) Song, G.;
Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (d) Kuhl, N.; Hopkinson,
M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51,
10236. (e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev.
2012, 112, 5879. (f) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111,
1215. (g) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res.
2011, 45, 788. (h) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A.
Acc. Chem. Res. 2011, 45, 814. (i) Cho, S. H.; Kim, J. Y.; Kwak, J.;
Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (j) Ackermann, L. Chem. Rev.
2011, 111, 1315. (k) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111,
1293. (l) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (m)
Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(n) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (o)
Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev.
2009, 38, 3242.
† Chinese Academy of Sciences.
‡ Dalian University of Technology.
(1) (a) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A.
J. Med. Chem. 1989, 32, 2163. (b) McDevitt, R. E.; Malamas, M. S.;
Manas, E. S.; Unwalla, R. J.; Xu, Z. B.; Miller, C. P.; Harris, H. A.
Bioorg. Med. Chem. Lett. 2005, 15, 3137. (c) Jeffrey, J. L.; Sarpong, R.
Org. Lett. 2009, 11, 5450. (d) Clark, W. M.; Tickner-Eldridge, A. M.;
Huang, G. K.; Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.;
Baine, N. H. J. Am. Chem. Soc. 1998, 120, 4550.
(2) (a) Galatsis, P.; Manwell, J. J.; Blackwell, J. M. Can. J. Chem.
1994, 72, 1656. (b) Martens, H.; Hoornaert, G. Tetrahedron 1974, 30,
3641. (c) Floyd, M. B.; Allen, G. R. J. Org. Chem. 1970, 35, 2647. (d)
Marvel, C. S.; Hinman, C. W. J. Am. Chem. Soc. 1954, 76, 5435.
(3) Tsukamoto, H.; Kondo, Y. Org. Lett. 2007, 9, 4227.
(4) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58,
4579.
(5) (a) Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am. Chem. Soc. 1999,
121, 3238. (b) Miura, T.; Murakami, M. Org. Lett. 2005, 7, 3339.
(6) Harada, Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.; Fukumoto,
Y.; Chatani, N. J. Am. Chem. Soc. 2007, 129, 5766.
(7) Wender, P. A.; Paxton, T. J.; Williams, T. J. J. Am. Chem. Soc.
2006, 128, 14814.
(9) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org.
Chem. 1996, 61, 6941.
(10) Kuninobu, Y.; Matsuki, T.; Takai, K. Org. Lett. 2010, 12, 2948.
(11) Zhao, P.; Wang, F.; Han, K.; Li, X. Org. Lett. 2012, 14, 5506.
(12) (a) Wang, C.; Sun, H.; Fang, Y.; Huang, Y. Angew. Chem., Int.
Ed. 2013, 52, 5795. (b) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F.
J. Am. Chem. Soc. 2011, 133, 2154. (c) Unoh, Y.; Hashimoto, Y.;
Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2013, 15,
3258. (d) Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P. H. Org.
Lett. 2013, 15, 3358. (e) Zhang, G.; Yang, L.; Wang, Y.; Xie, Y.; Huang,
H. J. Am. Chem. Soc. 2013, 135, 8850. (f) Pham, M. V.; Ye, B.; Cramer,
N. Angew. Chem., Int. Ed. 2012, 51, 10610. (g) Huang, J.-R.; Zhang,
Q.-R.; Qu, C.-H.; Sun, X.-H.; Dong, L.; Chen, Y.-C. Org. Lett. 2013, 15,
1878. (h) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 6908. (i) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am.
Chem. Soc. 2011, 133, 6449. (j) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X.
Angew. Chem., Int. Ed. 2013, 52, 6033. (k) Wang, D.; Wang, F.; Song, G.;
Li, X. Angew. Chem., Int. Ed. 2012, 51, 12348. (l) Sun, Z.-M.; Chen,
S.-P.; Zhao, P. Chem.;Eur. J. 2010, 16, 2619.
r
10.1021/ol4025309
XXXX American Chemical Society