4502
J . Org. Chem. 1999, 64, 4502-4505
In tr a m olecu la r In ter a ction of Ad ja cen t Hyd r oxym eth yl, F or m yl,
a n d Ca r boxyl Gr ou p s: P r oxim ity Effect in th e Sw er n Oxid a tion of
cis,cis-1,3,5-Tr is(h yd r oxym eth yl)-1,3,5-tr im eth ylcycloh exa n e
Hiroshi Izumi* and Shigeru Futamura
National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, Ibaraki 305-8569, J apan
Received March 15, 1999
The proximity effect in the Swern oxidation of cis,cis-1,3,5-tris(hydroxymethyl)-1,3,5-trimethylcy-
clohexane (4) with TFAA was examined. The oxidation reaction of triol 4 with DMSO, TFAA, and
relatively small amounts of triethylamine gave 5-formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethyl-
cyclohexane-1-carboxylic acid hemiacetal (7a ) as well as 1,7,9-trimethyl-3,5,12-trioxawurtzitane
(6), 5-formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carboxylic acid lactone (5), and
polymers of cis,cis-1,3,5-triformyl-1,3,5-trimethylcyclohexane (2). Hemiacetal 7a underwent novel
solvent-dependent conversions to hemiacetal 7b, lactone 5, or 1,7,9-trimethyl-2-oxo-3,5-dioxatricyclo-
[5.3.1.04,9]undecane (8) via 5-formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carboxylic
acid. In the cases of relatively large amounts of triethylamine, trialdehyde 2 was given in moderate
yield.
In tr od u ction
materials. Aldehydes are good reagents for a variety of
reactions, and cis,cis-1,3,5-triformyl-1,3,5-trimethylcy-
clohexane (2)12 may also be utilized for new types of
ligands.13,14
cis,cis-1,3,5-Trimethylcyclohexane-1,3,5-tricarboxylic acid
(Kemp’s triacid) (1)1 has been used as a versatile molecule
for molecular recognition studies.2 Derivatives of triacid
1 have been also applied as a molecular cleft,3 self-
replicating system,4 chiral auxiliary,5 and sodium sac-
charide cotransporter.6 Recently, Lippard and co-workers
indicated that the dianion of m-xylylenediamine bis-
(Kemp’s triacid imide) is available for a methane mo-
nooxygenase model system7 and a molecular 18-wheeler.8
On the other hand, trisubstituted cyclohexanes have been
used as ligands to model metal-containing enzymes9,10
or phosphate receptors.11 These ligands were synthesized
by using triamines, not trialdehydes, as the starting
(1) Kemp, D. S.; Petrakis, K. S. J . Org. Chem. 1981, 46, 5140.
(2) (a) Bencini, A.; Bianchi, A.; Burguete, M. I.; Garc´ıa-Espan˜a, E.;
Luis, S. V.; Ram´ırez, J . A. J . Am. Chem. Soc. 1992, 114, 1919. (b)
Bencini, A.; Bianchi, A.; Burguete, M. I.; Dapporto, P.; Dome´nech, A.;
Garc´ıa-Espan˜a, E.; Luis, S. V.; Paoli, P.; Ram´ırez, J . A. J . Chem. Soc.,
Perkin Trans. 2 1994, 569.
(3) (a) Rebek, J ., J r.; Marshall, L.; Wolak, R.; Parris, K.; Killoran,
M.; Askew, B.; Nemeth, D.; Islam, N. J . Am. Chem. Soc. 1985, 107,
7476. (b) Rebek, J ., J r.; Askew, B.; Killoran, M.; Nemeth, D.; Lin, F.-
T. J . Am. Chem. Soc. 1987, 109, 2426. (c) J eong, K.-S.; Muehldorf, A.
V.; Rebek, J ., J r. J . Am. Chem. Soc. 1990, 112, 6144. (d) J eong, K. S.;
Tjivikua, T.; Muehldorf, A.; Deslongchamps, G.; Famulok, M.; Rebek,
J ., J r. J . Am. Chem. Soc. 1991, 113, 201.
Hydroxymethyl, formyl, and carboxyl groups have
different oxidation states, respectively. Intermolecular
and intramolecular reactions of alcohols with carboxylic
acids15,16 or aldehydes17,18 have been well-known, and
uronic acids19 have been known as compounds containing
hydroxymethyl, formyl, and carboxyl groups. However,
these derivatives have received little attention, and the
interaction among the adjacent three groups has not
clarified much.
(4) Tjivikua, T.; Ballester, P.; Rebek, J ., J r. J . Am. Chem. Soc. 1990,
112, 1249.
(12) Izumi, H.; Setokuchi, O.; Shimizu, Y.; Tobita, H.; Ogino, H. J .
Org. Chem. 1997, 62, 1173.
(13) Izumi, H.; Futamura, S. J . Chem. Soc., Perkin Trans. 1 1998,
1925.
(14) Casella, L.; Gullotti, M.; Pallanza, G.; Rigoni, L. J . Am. Chem.
Soc. 1988, 110, 4221.
(15) (a) Natelson, S.; Gottfried, S. Org. Synth. 1955, 3, 381. (b)
Clinton, R. O.; Laskowski, S. C. J . Am. Chem. Soc. 1948, 70, 3135. (c)
Klostergaard, H. J . Org. Chem. 1958, 23, 108.
(16) (a) J ohnson, W. S.; Bauer, V. J .; Margrave, J . L.; Frisch, M. A.;
Dreger, L. H.; Hubbard, W. N. J . Am. Chem. Soc. 1961, 83, 606. (b)
Minato, H.; Horibe, I. J . Chem. Soc. (C) 1968, 2131.
(17) Bell, J . M.; Kubler, D. G.; Sartwell, P.; Zepp, R. G. J . Org. Chem.
1965, 30, 4284.
(5) (a) Stack, J . G.; Curran, D. P.; Rebek, J ., J r.; Ballester, P. J .
Am. Chem. Soc. 1991, 113, 5918. (b) Stack, J . G.; Curran, D. P.; Geib,
S. V.; Rebek, J ., J r.; Ballester, P. J . Am. Chem. Soc. 1992, 114, 7007.
(6) Bien, J . T.; Shang, M.; Smith, B. D. J . Org. Chem. 1995, 60, 2147.
(7) (a) Herold, S.; Lippard, S. J . J . Am. Chem. Soc. 1997, 119, 145.
(b) Mizoguchi, T. J .; Lippard, S. J . Inorg. Chem. 1997, 36, 4526. (c)
Herold, S.; Lippard, S. J . Inorg. Chem. 1997, 36, 50. (d) LeCloux, D.
D.; Lippard, S. J . Inorg. Chem. 1997, 36, 4035.
(8) Watton, S. P.; Fuhrmann, P.; Pence, L. E.; Caneschi, A.; Cornia,
A.; Abbati, G. L.; Lippard, S. J . Angew. Chem., Int. Ed. Engl. 1997,
36, 2774.
(9) Greener, B.; Moore, M. H.; Walton, P. H. Chem. Commun. 1996,
27.
(10) Angelis, S.; Batsanov, A.; Norman, T. J .; Parker, D.; Senanay-
ake, K.; Vepsalainen, J . J . Chem. Soc., Chem. Commun. 1995, 2361.
(11) Raposo, C.; Almaraz, M.; Mart´ın, M.; Weinrich, V.; Musso´ns,
M. L.; Alca´zar, V.; Caballero, M. C.; Mora´n, J . R. Chem. Lett. 1995,
759.
(18) (a) Kjaer, A.; Lindberg, B. Acta Chem. Scand. 1959, 13, 1713.
(b) Pigman, W. The Carbohydrates; Academic Press: New York, 1957;
p 92.
(19) Theander, O. The Carbohydrates. Chemistry and Biochemistry;
Academic Press: New York, 1980; p 1023.
10.1021/jo990468o CCC: $18.00 © 1999 American Chemical Society
Published on Web 05/26/1999