A. Horne (OSU), Dr. Daniel P. Furkert (OSU) and Dr. Roger
Hanselmann (Rib-X Pharmaceuticals) for their helpful discussions.
Notes and references
1 T. MacMahon and J. Silke, Harmful Algae News, 1996, 14, 2.
2 M. Satake, K. Ofuji, H. Naoki, K. J. James, A. Furey, T. McMahon,
J. Silke and T. Yasumoto, J. Am. Chem. Soc., 1998, 120, 9967–68.
3 A. Furey, C. Moroney, A. B. Magdalena, M. J. Fidalgo Saez, M. Lehane
and K. J. James, Environ. Sci. Technol., 2003, 37, 3078–84.
4 K. J. James, A. Furey, M. Lehane, H. Ramstad, T. Aune, P. Hovgaard,
S. Morris, W. Higman, M. Satake and T. Yasumoto, Toxicon, 2002, 40,
909–15.
5 K. J. James, C. Moroney, C. Roden, M. Satake, T. Yasumoto,
M. Lehane and A. Furey, Toxicon, 2003, 41, 145–51.
6 E. Ito, M. Satake, K. Ofuji, N. Kurita, T. McMahon, K. James and
T. Yasumoto, Toxicon, 2000, 38, 917–30.
7 (a) R. G. Carter and D. J. Weldon, Org. Lett., 2000, 2, 3913–16;
(b) R. G. Carter, D. J. Weldon and T. C. Bourland, 221st National ACS
Meeting, San Diego, ORG-479; (c) R. G. Carter and D. E. Graves,
Tetrahedron Lett., 2001, 42, 6035–39; (d) R. G. Carter, T. C. Bourland
and D. E. Graves, Org. Lett., 2002, 4, 2177–79; (e) R. G. Carter,
D. E. Graves, M. A. Gronemeyer and G. S. Tschumper, Org. Lett.,
2002, 4, 2181–4; (f) R. G. Carter, T. C. Bourland, X.-T. Zhou and
M. A. Gronemeyer, Tetrahedron, 2003, 59, 8963–74.
Scheme 6 (i) DIBAL-H, CH2Cl2, 278 uC, 78%; (ii) 11, KHMDS, THF,
278 uC to r.t., 45%; (iii) TBAF, THF, 57%; (iv) TPAP, NMO, CH2Cl2,
mol. sieves, 68%; (v) NaClO2, t-BuOH, H2O, 2-methyl-2-butene, 60%.
8 (a) A. B. Dounay and C. J. Forsyth, Org. Lett., 2001, 3, 975–78;
(b) J. Aiguade, J. Hao and C. J. Forsyth, Org. Lett., 2001, 3, 979–82;
(c) J. Aiguade, J. Hao and C. J. Forsyth, Tetrahedron Lett., 2001, 42,
817–20; (d) J. Hao, J. Aiguade and C. J. Forsyth, Tetrahedron Lett.,
2001, 42, 821–24; (e) K. C. Nicolaou, P. M. Pihko, N. Diedrichs, N. Zou
and F. Bernal, Angew. Chem. Int. Ed., 2001, 40, 1262–65; (f)K. R. Buszek,
221st National ACS Meeting, San Diego, ORGN-570; (g) C. J. Forsyth,
J. Hao and J. Aiguade, Angew. Chem. Int. Ed., 2001, 40, 3663–67;
(h) K. C. Nicolaou, W. Qian, F. Bernal, N. Uesaka, P. M. Pihko and
J. Hinrichs, Angew. Chem. Int. Ed., 2001, 40, 4068–71; (i) M. Sasaki,
Y. Iwamuro, J. Nemoto and M. Oikawa, Tetrahedron Lett., 2003, 44,
6199–201; (j) K. R. Buszek, T. S. Gibson, B. C. Reinhardt and
J. R. Sunde, 226th ACS National Meeting, New York, ORGN-179;
(k) Y. Ishikawa and S. Nishiyama, Tetrahedron Lett., 2004, 45, 351–54;
(l) Y. Ishikawa and S. Nishiyama, Heterocycles, 2004, 63, 539–65;
(m) Y. Ishikawa and S. Nishiyama, Heterocycles, 2004, 63, 885–93.
9 (a) K. C. Nicolaou, Y. Li, N. Uesaka, T. V. Koftis, S. Vyskocil, T. Ling,
M. Govindasamy, W. Qian, F. Bernal and D. Y.-K. Chen, Angew.
Chem. Int. Ed., 2003, 42, 3643–48; (b) K. C. Nicolaou, D. Y.-K. Chen,
Y. Li, W. Qian, T. Ling, S. Vyskocil, T. V. Koftis, M. Govindasamy and
N. Uesaka, Angew. Chem. Int. Ed., 2003, 42, 3649–53; (c) K. C. Nicolaou,
S. Vyskocil, T. V. Koftis, Y. M. A. Yamada, T. Ling, D. Y.-K. Chen,
W. Tang, G. Petrovic, M. O. Frederick and Y. M. Satake, Angew. Chem.
Int. Ed., 2004, 43, 4312–4318; (d) K. C. Nicolaou, T. V. Koftis,
S. Vyskocil, G. Petrovic, T. Ling, Y. M. A. Yamada, W. Tang and
M. O. Frederick, Angew. Chem. Int. Ed., 2004, 43, 4318–4324.
10 A. Abiko, J.-F. Liu and S. Masamune, J. Am. Chem. Soc., 1997, 119,
2586–87.
were again observed confirming the transoidal nature of both
compounds.
With the synthesis of the lactone 30 complete, conversion to the
ABCDE ring system was undertaken (Scheme 6). Reduction with
DIBAL-H provided the lactol as a mixture of undetermined
epimers. Subsequent Wadsworth–Emmons olefination with in situ
cyclization20 gave the coupled material 32 in reasonable (45%)
yield. Finally, TBAF removal of the protecting groups and oxida-
tion at C1 gave the ABCDE ring system 34.
Comparison of the NMR spectra of synthetic 33 and 34 and
azaspiracid-1 in identical solvents (CD3OD 1 0.5% CD3CO2D)
revealed some intriguing results. Large sections of the synthetic
materials 33 and 34 were in good agreement with published data
for azaspiracid-1.2 Major points of divergence proved to be the H8,9
alkene position and H6 (1H NMR: 33 H6 ~ 4.36, 34 H6 ~ 4.35,
azaspiracid-1 H6 ~ 4.81; 33 H8 ~ 5.94, 34 H8 ~ 5.95, azaspiracid-
1 H8 ~ 5.76). Given the results presented, we concluded that the
relocation of the alkene to the C7,8 position (e.g. compound 7) was
necessary for the actual structure of azaspiracid-1. Subsequent to
this conclusion, Professor Nicolaou independently reported the
confirmation of this assignment.9d
In summary, efficient approaches to the originally proposed
ABCD ring system (17 steps from oxazolidinone ent-23) and the
revised ABCDE ring system (21 steps from oxazolidinone 23) of
azaspiracid are presented. It is important to note that acid 34
contains the correct stereochemistry at C6, C10, C13, C14, C16, C17,
C19, C21, C22, C24 and C25 necessary for the actual structure of
azaspiracid-1 (7).9d Key transformations include the Wadsworth–
Emmons coupling to form the C19,20 linkage and bisspiroketaliza-
tion of the ketone 28 to provide a single transoidal bisspiroketal 29.
Further progress toward the total synthesis of the actual structure
of azaspiracid-1 (7) will be reported in due course.
Financial support was provided by the National Institutes
of Health (GM63723). We thank Professor Michael Doyle
(University of Maryland) for his generous gift of the rhodium
catalysts. The authors would also like to thank Professor Max
Dienzer (OSU) and Dr. Jeff Morre´ (OSU) for mass spectral data,
Roger Kohnert (OSU) for NMR assistance, Professor David
11 T. Inoue, J.-F. Liu, D. C. Buskke and A. Abiko, J. Org. Chem., 2002, 67,
5250–56.
12 A. G. Myers and L. McKinstry, J. Org. Chem., 1996, 61, 2428–40.
13 Dounay and Forsyth have reported isolation of an additional
bisspiroketal product from selected conditions. Their compound was
assigned to be the C14-epi product bearing a cisoidal bisspiroketal. See
ref. 8a and A. B. Dounay, Ph.D. 2001, University of Minnesota,
pp. 160–166.
14 P. K. Freeman and L. L. Hutchinson, J. Org. Chem., 1980, 45, 1924–30.
15 M. P. Doyle and A. J. Catino, Tetrahedron: Asymm., 2003, 14, 925–28.
16 A. G. H. Wee, J. Org. Chem., 2001, 66, 8513–17.
17 M. P. Doyle, Q.-L. Zhou, C. E. Raab, G. H. P. Roos, S. H. Simonsen
and V. Lynch, Inorg. Chem., 1996, 35, 6064–73.
18 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev.,
1994, 94, 2483–547.
19 See ESI for full account of Mosher model. I. Ohtani, T. Kusumi,
Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991, 113, 4092–96.
20 D. L. Boger, S. Ichikawa and W. Zhong, J. Am. Chem. Soc., 2001, 123,
4161–67.
2 1 4 0
C h e m . C o m m u n . , 2 0 0 4 , 2 1 3 8 – 2 1 4 0